Introduction of a Novel Multispectral Imaging Screening Algorithm to Distinguish Malignant Melanoma from Seborrheic Keratosis

被引:0
|
作者
Banvolgyi, A. [1 ]
Bozsanyi, S. [1 ]
Farkas, K. [1 ]
Lorincz, K. [1 ]
Jobbagy, A. [1 ]
Lihacova, I. [2 ]
Lihachev, A. [2 ]
Medvecz, M. [1 ]
Kiss, N. [1 ]
Wikonkal, N. M. [1 ]
机构
[1] Semmelweis Univ, Dermatol Venereol & Dermatooncol, Budapest, Hungary
[2] Univ Latvia, Inst Atom Phys & Spect, Riga, Latvia
关键词
D O I
暂无
中图分类号
R75 [皮肤病学与性病学];
学科分类号
100206 ;
摘要
479
引用
收藏
页码:S263 / S263
页数:1
相关论文
共 50 条
  • [31] From needles to numbers: can noninvasive imaging distinguish benign and malignant adrenal lesions?
    Choyke, PL
    WORLD JOURNAL OF UROLOGY, 1998, 16 (01) : 29 - 34
  • [32] From needles to numbers: can noninvasive imaging distinguish benign and malignant adrenal lesions?
    Peter L. Choyke
    World Journal of Urology, 1998, 16 : 29 - 34
  • [33] A Magnetic Resonance Imaging Radiomics Signature to Distinguish Benign From Malignant Orbital Lesions
    Duron, Loic
    Heraud, Alexandre
    Charbonneau, Frederique
    Zmuda, Mathieu
    Savatovsky, Julien
    Fournier, Laure
    Lecler, Augustin
    INVESTIGATIVE RADIOLOGY, 2021, 56 (03) : 173 - 180
  • [34] Stem Cell-Associated Markers Distinguish Melanoma from Malignant Peripheral Nerve Sheath Tumor
    Wagner, D.
    Miller, E.
    Yang, Q.
    Scott, G.
    Rubin, B. P.
    Huang, J.
    MODERN PATHOLOGY, 2010, 23 : 123A - 123A
  • [35] Stem Cell-Associated Markers Distinguish Melanoma from Malignant Peripheral Nerve Sheath Tumor
    Wagner, D.
    Miller, E.
    Yang, Q.
    Scott, G.
    Rubin, B. P.
    Huang, J.
    LABORATORY INVESTIGATION, 2010, 90 : 123A - 123A
  • [36] The novel diagnostic system to distinguish melanoma from nevus using droplet digital PCR
    Kadohisa, M. Tsuruta
    Fukushima, S.
    Miyashita, A.
    Aoi, J.
    Kubo, Y.
    Nakahara, S.
    Kuriyama, H.
    Kimura, T.
    Ihn, H.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2018, 138 (05) : S32 - S32
  • [37] A Novel Interpretable Radiomics Model to Distinguish Nodular Goiter From Malignant Thyroid Nodules
    Zhang, Hao
    Yang, Yun-Feng
    Yang, Chao
    Yang, Yuan-Yuan
    He, Xin-Hong
    Chen, Chao
    Song, Xue-Lin
    Ying, Lei-Lei
    Wang, Ying
    Xu, Li-Chao
    Li, Wen-Tao
    JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2024, 48 (02) : 334 - 342
  • [38] Bimodal multispectral imaging system with cloud-based machine learning algorithm for real-time screening and detection of oral potentially malignant lesions and biopsy guidance
    Narayanan, Subhash
    Anand, Suresh
    Prasanna, Ranimol
    Managoli, Sandeep
    Suvarnadas, Rinoy
    Shyamsundar, Vidyarani
    Nagarajan, Karthika
    Mishra, Sourav K.
    Johnson, Migi
    Ramanand, Mahesh Dathurao
    Jogigowda, Sanjay C.
    Rao, Vishal
    Gopinath, Kodaganur S.
    JOURNAL OF BIOMEDICAL OPTICS, 2021, 26 (08)
  • [39] Mass Spectrometry Imaging Can Distinguish on a Proteomic Level Between Proliferative Nodules Within a Benign Congenital Nevus and Malignant Melanoma
    Lazova, Rossitza
    Yang, Zhe
    El Habr, Constantin
    Lim, Young
    Choate, Keith Adam
    Seeley, Erin H.
    Caprioli, Richard M.
    Li Yangqun
    AMERICAN JOURNAL OF DERMATOPATHOLOGY, 2017, 39 (09) : 689 - 695
  • [40] Deep Learning to Distinguish Benign from Malignant Renal Lesions Based on Routine MR Imaging
    Xi, Ianto Lin
    Zhao, Yijun
    Wang, Robin
    Chang, Marcello
    Purkayastha, Subhanik
    Chang, Ken
    Huang, Raymond Y.
    Silva, Alvin C.
    Vallieres, Martin
    Habibollahi, Peiman
    Fan, Yong
    Zou, Beiji
    Gade, Terence P.
    Zhang, Paul J.
    Soulen, Michael C.
    Zhang, Zishu
    Bai, Harrison X.
    Stavropoulos, S. William
    CLINICAL CANCER RESEARCH, 2020, 26 (08) : 1944 - 1952