Synthesis, Crystal Structure, and Magnetic Properties of Li3Mg2OsO6, a Geometrically Frustrated Osmium(V) Oxide with an Ordered Rock Salt Structure: Comparison with Isostructural Li3Mg2RuO6

被引:6
|
作者
Nguyen, Phuong-Hieu T. [1 ]
Ramezanipour, Farshid [2 ,3 ]
Greedan, John E. [2 ,3 ]
Cranswick, Lachlan M. D. [4 ]
Derakhshan, Shahab [1 ]
机构
[1] Calif State Univ Long Beach, Dept Chem & Biochem, Long Beach, CA 90840 USA
[2] McMaster Univ, Brockhouse Inst Mat Res, Hamilton, ON L8S 4M1, Canada
[3] McMaster Univ, Dept Chem, Hamilton, ON L8S 4M1, Canada
[4] Canadian Neutron Beam Ctr, Chalk River Lab, Chalk River, ON K0J 1J0, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1021/ic3013377
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
The novel osmium-based oxide Li3Mg2OsO6 was synthesized in polycrystalline form by reducing Li5OsO6 by osmium metal and osmium(IV) oxide in the presence of stoichiometric amounts of magnesium oxide. The crystal structure was refined using powder X-ray diffraction data in the orthorhombic Fddd space group with a = 5.88982(5) angstrom, b = 8.46873(6) angstrom, and c = 17.6825(2) A. This compound is isostructural and isoelectronic with the ruthenium-based system Li3Mg2RuO6. The magnetic ion sublattice Os5+ (S = 3/2) consists of chains of interconnected corner- and edge-shared triangles, which brings about the potential for geometric magnetic frustration. The Curie Weiss law holds over the range 80-300 K with C = 1.42(3) emu center dot K/mol [mu(eff) = 3.37(2) mu(B)] and theta(C) = 105.8(2) K. Below 80 K, there are three anomalies at 75, 30, and 8 K. Those at 75 and 30 K are suggestive of short-range antiferromagnetic correlations, while that at 8 K is a somewhat sharper maximum showing a zero-field-cooled/field-cooled divergence suggestive of perhaps spin freezing. The absence of magnetic Bragg peaks at 3.9 K in the neutron diffraction pattern supports this characterization, as does the absence of a sharp peak in the heat capacity, which instead shows only a very broad maximum at similar to 12 K. A frustration index of f = 106/8 = 13 indicates a high degree of frustration. The magnetic properties of the osmium phase differ markedly from those of the isostructural ruthenium material, which shows long-range antiferromagnetic order below 17 K, f = 6, and no unusual features at higher temperatures. Estimates of the magnetic exchange interactions at the level of spin-dimer analysis for both the ruthenium and osmium materials support a more frustrated picture for the latter. Errors in the calculation and assignment of the exchange pathways in the previous report on Li3Mg2RuO6 are identified and corrected.
引用
收藏
页码:11493 / 11499
页数:7
相关论文
共 50 条
  • [31] Correlation between crystal structure and modified microwave dielectric characteristics of Cu2+ substituted Li3Mg2NbO6 ceramics
    Wang, Gang
    Zhang, Dainan
    Xu, Fang
    Huang, Xin
    Yang, Yan
    Gan, Gongwen
    Lai, Yuanming
    Rao, Yiheng
    Liu, Cheng
    Li, Jie
    Jin, Lichuan
    Zhang, Huaiwu
    CERAMICS INTERNATIONAL, 2019, 45 (08) : 10170 - 10175
  • [32] Synthesis, crystal structure and crystal chemistry of ferri-clinoholmquistite, □Li2Mg3Fe3+2Si8O22(OH)2
    Iezzi, G
    Cámara, F
    Della Ventura, G
    Oberti, R
    Pedrazzi, G
    Robert, JL
    PHYSICS AND CHEMISTRY OF MINERALS, 2004, 31 (06) : 375 - 385
  • [33] Synthesis, crystal structure and crystal chemistry of ferri-clinoholmquistite, □Li2Mg3Fe3+2Si8O22(OH)2
    G. Iezzi
    F. Cámara
    R. Oberti
    G. Della Ventura
    G. Pedrazzi
    J-L Robert
    Physics and Chemistry of Minerals, 2004, 31 : 375 - 385
  • [34] Synthesis and crystal structure of {[Li(NH3)4]2[18-crown-6]}[Li(NH3)4]2(Sn3ph6)2 • 4 NH3
    Wiesler, K
    Korber, N
    ZEITSCHRIFT FUR KRISTALLOGRAPHIE, 2005, 220 (2-3): : 188 - 191
  • [35] Crystal structure, infrared spectroscopy and microwave dielectric properties of ultra low-loss Li2Mg3Ti0.95(Mg1/3Sb2/3)0.05O6 ceramic
    Pan, H. L.
    Zhang, Y. W.
    Wu, H. T.
    CERAMICS INTERNATIONAL, 2018, 44 (03) : 3464 - 3468
  • [36] Monoclinic honeycomb-layered compound Li3Ni2SbO6: preparation, crystal structure and magnetic properties
    Zvereva, Elena A.
    Evstigneeva, Maria A.
    Nalbandyan, Vladimir B.
    Savelieva, Olga A.
    Ibragimov, Sergey A.
    Volkova, Olga S.
    Medvedeva, Larisa I.
    Vasiliev, Alexander N.
    Klingeler, Ruediger
    Buechner, Bernd
    DALTON TRANSACTIONS, 2012, 41 (02) : 572 - 580
  • [37] Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6]
    Murad A. AlDamen
    Hassan K. Juwhari
    Aya M. Al-zuheiri
    Louy A. Alnazer
    Crystallography Reports, 2017, 62 : 1160 - 1164
  • [38] Hydrothermal Synthesis, Crystal Structure, and Photoluminescent Properties of Li[UO2(CH3COO)3]3[Co(H2O)6]
    AlDamen, Murad A.
    Juwhari, Hassan K.
    Al-zuheiri, Aya M.
    Alnazer, Louy A.
    CRYSTALLOGRAPHY REPORTS, 2017, 62 (07) : 1160 - 1164
  • [39] Effects of non-stoichiometry on the structural evolution, microstructure and dielectric properties of rock salt-type Li2Mg3SnO6 ceramics
    Shi, Xiao-lei
    Zhang, Huai-wu
    Xu, Fang
    Li, Jie
    Jin, Li-chuan
    Liu, Cheng
    Wang, Xue-ying
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 13 : 283 - 290
  • [40] Sintering behavior and microwave dielectric properties of V5+ substituted Li3Mg2SbO6 ceramics
    Cui-jin Pei
    Yang Li
    Cai-dan Hou
    Bo-xuan Xie
    Guo-guang Yao
    Wei Ren
    Zhao-yu Ren
    Peng Liu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 14495 - 14499