On Generative Modeling of Cell Shape Using 3D GANs

被引:10
|
作者
Wiesner, David [1 ]
Necasova, Tereza [1 ]
Svoboda, David [1 ]
机构
[1] Masaryk Univ, Fac Informat, Ctr Biomed Image Anal, Brno, Czech Republic
关键词
Image-based simulations; 3D GAN; Training stability; Microscopy data; Digital cell shape; SIMULATION;
D O I
10.1007/978-3-030-30645-8_61
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ongoing advancement of deep-learning generative models, showing great interest of the scientific community since the introduction of the generative adversarial networks (GAN), paved the way for generation of realistic data. The utilization of deep learning for the generation of realistic biomedical images allows one to alleviate the constraints of the parametric models, limited by the employed mathematical approximations. Building further upon the laid foundation, the 3D GAN added another dimension, allowing generation of fully 3D volumetric data. In this paper, we present an approach to generating fully 3D volumetric cell masks using GANs. Presented model is able to generate high-quality cell masks with variability matching the real data. Required modifications of the proposed model are presented along with the training dataset, based on 385 real cells captured using the fluorescence microscope. Furthermore, the statistical validation is also presented, allowing to quantitatively assess the quality of data generated by the proposed model.
引用
收藏
页码:672 / 682
页数:11
相关论文
共 50 条
  • [41] Publisher Correction: 3D Shape Modeling for Cell Nuclear Morphological Analysis and Classification
    Alexandr A. Kalinin
    Ari Allyn-Feuer
    Alex Ade
    Gordon-Victor Fon
    Walter Meixner
    David Dilworth
    Syed S. Husain
    Jeffrey R. de Wet
    Gerald A. Higgins
    Gen Zheng
    Amy Creekmore
    John W. Wiley
    James E. Verdone
    Robert W. Veltri
    Kenneth J. Pienta
    Donald S. Coffey
    Brian D. Athey
    Ivo D. Dinov
    Scientific Reports, 8
  • [42] Applying cell-DEVS in 3D free-form shape modeling
    Wu, PF
    Wu, XP
    Wainer, G
    CELLULAR AUTOMATA, PROCEEDINGS, 2004, 3305 : 81 - 90
  • [43] A systematic literature review of generative adversarial networks (GANs) in 3D avatar reconstruction from 2D images
    Koh, Angela Jia Hui
    Tan, Siok Yee
    Nasrudin, Mohammad Faidzul
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (26) : 68813 - 68853
  • [44] GHUM & GHUML: Generative 3D Human Shape and Articulated Pose Models
    Xu, Hongyi
    Bazavan, Eduard Gabriel
    Zanfir, Andrei
    Freeman, William T.
    Sukthankar, Rahul
    Sminchisescu, Cristian
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6183 - 6192
  • [45] imGHUM: Implicit Generative Models of 3D Human Shape and Articulated Pose
    Alldieck, Thiemo
    Xu, Hongyi
    Sminchisescu, Cristian
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 5441 - 5450
  • [46] Pictonaut: movie cartoonization using 3D human pose estimation and GANs
    Tous, Ruben
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (14) : 21101 - 21115
  • [47] 3D object retrieval using the 3D shape impact descriptor
    Mademlis, Athanasios
    Daras, Petros
    Tzovaras, Dimitrios
    Strintzis, Michael G.
    PATTERN RECOGNITION, 2009, 42 (11) : 2447 - 2459
  • [48] Dynamical Deep Generative Latent Modeling of 3D Skeletal Motion
    Amirreza Farnoosh
    Sarah Ostadabbas
    International Journal of Computer Vision, 2022, 130 : 2695 - 2706
  • [49] Evolutive 3D Modeling: A Proposal for a New Generative Design Methodology
    Nebot, Jaime
    Pena, Juan A.
    Lopez Gomez, Carmelo
    SYMMETRY-BASEL, 2021, 13 (02): : 1 - 12
  • [50] Dynamical Deep Generative Latent Modeling of 3D Skeletal Motion
    Farnoosh, Amirreza
    Ostadabbas, Sarah
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2022, 130 (11) : 2695 - 2706