A new percolation model for composite solid electrolytes and dispersed ionic conductors

被引:2
|
作者
Hasyim, Muhammad Risyad [1 ,2 ]
Lanagan, Michael T. [1 ,3 ,4 ]
机构
[1] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Chem Engn, University Pk, PA 16802 USA
[3] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[4] Penn State Univ, Mat Res Inst, Ctr Dielect & Piezoelect, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
composite solid electrolytes; dispersed ionic conductors; effective medium approximation; percolation; impedance spectroscopy; ionic conductivity; SPACE-CHARGE REGIONS; EFFECTIVE-MEDIUM APPROXIMATION; ELECTRICAL-CONDUCTIVITY; AC CONDUCTIVITY; GREENS-FUNCTION; PARTICLE-SIZE; SYSTEMS; ENHANCEMENT; PHASE; RESISTANCE;
D O I
10.1088/1361-651X/aaa26f
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Composite solid electrolytes (CSEs) including conductor/insulator composites known as dispersed ionic conductors (DICs) have motivated the development of novel percolation models that describe their conductivity. Despite the long history, existing models lack in one or more key areas: (1) rigorous foundation for their physical theory, (2) explanation for non-universal conductor-insulator transition, (3) classification of DICs, and (4) extension to frequency-domain. This work describes a frequency-domain effective medium approximation (EMA) of a bond percolation model for CSEs. The EMA is derived entirely from Maxwell's equations and contains basic microstructure parameters. The model was applied successfully to several composite systems from literature. Simulations and fitting of literature data address these key areas and illustrate the interplay between space charge layer properties and bulk microstructure.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] A model problem concerning ionic transport in microstructured solid electrolytes
    Ignacio J. Curto Sillamoni
    Martín I. Idiart
    Continuum Mechanics and Thermodynamics, 2015, 27 : 941 - 957
  • [42] A model problem concerning ionic transport in microstructured solid electrolytes
    Curto Sillamoni, Ignacio J.
    Idiart, Martin I.
    CONTINUUM MECHANICS AND THERMODYNAMICS, 2015, 27 (06) : 941 - 957
  • [43] IONIC POLARONS IN SOLID ELECTROLYTES
    MAHAN, FG
    PARDEE, WJ
    PHYSICS LETTERS A, 1974, A 49 (04) : 325 - 326
  • [44] Activation in solid ionic electrolytes
    Noori, K.
    Olsen, B. A.
    Rodin, A.
    PHYSICAL REVIEW RESEARCH, 2024, 6 (02):
  • [45] Solid-state supercapacitors using ionic liquid dispersed Li+-NASICONs as electrolytes
    Kaur, Gurpreet
    Sivasubramanian, Seshadri Chandrasekara
    Dalvi, Anshuman
    ELECTROCHIMICA ACTA, 2022, 434
  • [46] Anhydrous proton conductors for use as solid electrolytes
    Pawlaczyk, Cz.
    Pawlowski, A.
    Polomska, M.
    Pogorzelec-Glaser, K.
    Hilczer, B.
    Pietraszko, A.
    Markiewicz, E.
    Lawniczak, P.
    Szczesniak, L.
    PHASE TRANSITIONS, 2010, 83 (10-11) : 854 - 867
  • [47] Function and applications of solid ionic conductors
    Yamamoto, O
    DENKI KAGAKU, 1996, 64 (07): : 789 - 793
  • [48] SOLID IONIC CONDUCTORS - PRINCIPLES AND APPLICATIONS
    RICKERT, H
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1978, 17 (01): : 37 - 46
  • [49] STRUCTURAL ASPECTS OF SOLID IONIC CONDUCTORS
    SCHULZ, H
    SILIKATY, 1979, 23 (02): : 163 - 172
  • [50] STRUCTURAL ASPECTS OF SOLID IONIC CONDUCTORS
    SCHULZ, H
    CHEMIE INGENIEUR TECHNIK, 1978, 50 (04) : 301 - 302