Powers of two as sums of three Fibonacci numbers

被引:14
|
作者
Bravo, Eric F. [1 ]
Bravo, Jhon J. [1 ]
机构
[1] Univ Cauca, Dept Matemat, Calle 5 4-70, Popayan, Colombia
关键词
Diophantine equations; Fibonacci numbers; Zeckendorf representation; linear forms in logarithms; reduction method;
D O I
10.1007/s10986-015-9282-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We find all positive integer solutions of the Diophantine equation F (n) + F (m) + F (e) = 2 (a) , where F (k) is the kth term of the Fibonacci sequence. This paper continues and extends the previous work of J.J. Bravo and F. Luca [On the Diophantine equation F (n) + F (m) = 2 (a) , Quaest. Math., to appear].
引用
收藏
页码:301 / 311
页数:11
相关论文
共 50 条
  • [21] Sums of products of two reciprocal Fibonacci numbers
    Liu, Runnan
    Wang, Andrew Y. Z.
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2016,
  • [22] Sums of products of two reciprocal Fibonacci numbers
    Runnan Liu
    Andrew YZ Wang
    [J]. Advances in Difference Equations, 2016
  • [23] On the sum of powers of two consecutive Fibonacci numbers
    Marques, Diego
    Togbe, Alain
    [J]. PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2010, 86 (10) : 174 - 176
  • [24] Sum and Difference of Powers of Two Fibonacci Numbers
    Taclay, Richard J.
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2024, 19 (04): : 1155 - 1158
  • [25] SOME CONJECTURES CONCERNING SUMS OF ODD POWERS OF FIBONACCI AND LUCAS NUMBERS
    Melham, R. S.
    [J]. FIBONACCI QUARTERLY, 2008, 46-47 (04): : 312 - 315
  • [26] On Fibonacci numbers as sum of powers of two consecutive Tribonacci numbers
    Alessandra Kreutz
    Diego Marques
    Pavel Trojovský
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [27] On Fibonacci numbers as sum of powers of two consecutive Tribonacci numbers
    Kreutz, Alessandra
    Marques, Diego
    Trojovsky, Pavel
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [28] ON FACTORIALS EXPRESSIBLE AS SUMS OF AT MOST THREE FIBONACCI NUMBERS
    Luca, Florian
    Siksek, Samir
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2010, 53 : 747 - 763
  • [29] Sums of powers of Fibonacci polynomials
    Prodinger, Helmut
    [J]. PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2009, 119 (05): : 567 - 570
  • [30] Sums of powers of Fibonacci polynomials
    Helmut Prodinger
    [J]. Proceedings - Mathematical Sciences, 2009, 119 : 567 - 570