Using Machine Learning to Predict ICU Transfer in Hospitalized COVID-19 Patients

被引:111
|
作者
Cheng, Fu-Yuan [1 ]
Joshi, Himanshu [1 ,2 ]
Tandon, Pranai [3 ]
Freeman, Robert [1 ,4 ]
Reich, David L. [4 ,5 ]
Mazumdar, Madhu [1 ,2 ]
Kohli-Seth, Roopa [6 ]
Levin, Matthew A. [5 ,7 ]
Timsina, Prem [1 ]
Kia, Arash [1 ]
机构
[1] Icahn Sch Med Mt Sinai, Inst Healthcare Delivery Sci, 1425 Madison Ave, New York, NY 10029 USA
[2] Icahn Sch Med Mt Sinai, Dept Populat Hlth Sci & Policy, 1425 Madison Ave, New York, NY 10029 USA
[3] Icahn Sch Med Mt Sinai, Resp Inst, 10 E 102nd St, New York, NY 10029 USA
[4] Mt Sinai Hosp, Hosp Adm, 1 Gustave L Levy Pl, New York, NY 10029 USA
[5] Icahn Sch Med Mt Sinai, Dept Anesthesiol Perioperat & Pain Med, 1 Gustave L Levy Pl, New York, NY 10029 USA
[6] Icahn Sch Med Mt Sinai, Inst Crit Care Med, New York, NY 10029 USA
[7] Icahn Sch Med Mt Sinai, Dept Genet & Genom Sci, 1 Gustave L Levy Pl, New York, NY 10029 USA
关键词
COVID-19; critical care; supervised machine learning; random forest; intensive care units;
D O I
10.3390/jcm9061668
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives: Approximately 20-30% of patients with COVID-19 require hospitalization, and 5-12% may require critical care in an intensive care unit (ICU). A rapid surge in cases of severe COVID-19 will lead to a corresponding surge in demand for ICU care. Because of constraints on resources, frontline healthcare workers may be unable to provide the frequent monitoring and assessment required for all patients at high risk of clinical deterioration. We developed a machine learning-based risk prioritization tool that predicts ICU transfer within 24 h, seeking to facilitate efficient use of care providers' efforts and help hospitals plan their flow of operations. Methods: A retrospective cohort was comprised of non-ICU COVID-19 admissions at a large acute care health system between 26 February and 18 April 2020. Time series data, including vital signs, nursing assessments, laboratory data, and electrocardiograms, were used as input variables for training a random forest (RF) model. The cohort was randomly split (70:30) into training and test sets. The RF model was trained using 10-fold cross-validation on the training set, and its predictive performance on the test set was then evaluated. Results: The cohort consisted of 1987 unique patients diagnosed with COVID-19 and admitted to non-ICU units of the hospital. The median time to ICU transfer was 2.45 days from the time of admission. Compared to actual admissions, the tool had 72.8% (95% CI: 63.2-81.1%) sensitivity, 76.3% (95% CI: 74.7-77.9%) specificity, 76.2% (95% CI: 74.6-77.7%) accuracy, and 79.9% (95% CI: 75.2-84.6%) area under the receiver operating characteristics curve. Conclusions: A ML-based prediction model can be used as a screening tool to identify patients at risk of imminent ICU transfer within 24 h. This tool could improve the management of hospital resources and patient-throughput planning, thus delivering more effective care to patients hospitalized with COVID-19.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Using Machine Learning to Predict Mortality for COVID-19 Patients on Day 0 in the ICU
    Jamshidi, Elham
    Asgary, Amirhossein
    Tavakoli, Nader
    Zali, Alireza
    Setareh, Soroush
    Esmaily, Hadi
    Jamaldini, Seyed Hamid
    Daaee, Amir
    Babajani, Amirhesam
    Kashi, Mohammad Ali Sendani
    Jamshidi, Masoud
    Rahi, Sahand Jamal
    Mansouri, Nahal
    FRONTIERS IN DIGITAL HEALTH, 2022, 3
  • [2] Machine Learning to Predict COVID-19 and ICU Requirement
    Podder, Prajoy
    Mondal, M. Rubaiyat Hossain
    PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 483 - 486
  • [3] Using Machine Learning to Predict mortality for first-day COVID-19 patients presenting to the ICU
    Jamshidi, Elham
    Rahi, Sahand
    Mansouri, Nahal
    EUROPEAN RESPIRATORY JOURNAL, 2021, 58
  • [4] Development of a machine learning algorithm to predict intubation among hospitalized patients with COVID-19
    Arvind, Varun
    Kim, Jun S.
    Cho, Brian H.
    Geng, Eric
    Cho, Samuel K.
    JOURNAL OF CRITICAL CARE, 2021, 62 : 25 - 30
  • [5] A robust and parsimonious machine learning method to predict ICU admission of COVID-19 patients
    Famiglini, Lorenzo
    Campagner, Andrea
    Carobene, Anna
    Cabitza, Federico
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2022,
  • [6] Initial MEWS score to predict ICU admission or transfer of hospitalized patients with COVID-19: A retrospective study
    Barnett, William R.
    Radhakrishnan, Muthukumar
    Macko, John
    Hinch, Bryan T.
    Altorok, Nezam
    Assaly, Ragheb
    JOURNAL OF INFECTION, 2021, 82 (02) : 306 - 308
  • [7] Applying machine learning algorithms to predict outcomes in hospitalized COVID-19 patient
    El Euch, Ahmed Dhia
    Triki, Soumaya
    Kallel, Nour
    Gargouri, Rahma
    Kallel, Nesrin
    Feki, Walid
    Gargouri, Imed
    Kammoun, Samy
    EUROPEAN RESPIRATORY JOURNAL, 2023, 62
  • [8] A Clinical Decision Web to Predict ICU Admission or Death for Patients Hospitalised with COVID-19 Using Machine Learning Algorithms
    Aznar-Gimeno, Rocio
    Esteban, Luis M.
    Labata-Lezaun, Gorka
    del-Hoyo-Alonso, Rafael
    Abadia-Gallego, David
    Ramon Pano-Pardo, J.
    Jose Esquillor-Rodrigo, M.
    Lanas, Angel
    Trinidad Serrano, M.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH, 2021, 18 (16)
  • [9] Using Machine Learning to Predict Hospitalization and Mortality of COVID-19 Patients with Diabetic Retinopathy
    Zhong, Katherine
    Chen, Elizabeth
    Eickhoff, Carsten
    Greenberg, Paul
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [10] Predicting Risk of Mortality in COVID-19 Hospitalized Patients using Hybrid Machine Learning Algorithms
    Afrash M.R.
    Shanbehzadeh M.
    Kazemi-Arpanahi H.
    Journal of Biomedical Physics and Engineering, 2022, 12 (06): : 611 - 626