Fractional charges and fractional spins for composite fermions in quantum electrodynamics

被引:2
|
作者
Wang, Yong-Long [1 ,2 ,3 ]
Lu, Wei-Tao [1 ,2 ]
Jiang, Hua [1 ,2 ]
Xu, Chang-Tan [1 ]
Pan, Hong-Zhe [1 ,2 ]
机构
[1] Linyi Univ, Sch Sci, Dept Phys, Linyi 276005, Peoples R China
[2] Linyi Univ, Inst Condensed Matter Phys, Linyi 276005, Peoples R China
[3] MIT, Nucl Sci Lab, Ctr Phys Theor, Cambridge, MA 02139 USA
基金
中国国家自然科学基金;
关键词
constrained Hamiltonian systems; Faddeev-Senjanovic path integral quantization formalism; Noether theorem; CHERN-SIMONS TERM; NONLINEAR SIGMA-MODEL; GAUGE SYMMETRIES; DIRAC CONJECTURE; SYSTEM; STATISTICS; FIELDS;
D O I
10.1088/1674-1056/21/7/070501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the Faddeev-Senjanovic path integral quantization method, we quantize the composite fermions in quantum electrodynamics (QED). In the sense of Dirac's conjecture, we deduce all the constraints and give Dirac's gauge transformations (DGT). According to that the effective action is invariant under the DGT, we obtain the Noether theorem at the quantum level, which shows the fractional charges for the composite fermions in QED. This result is better than the one deduced from the equations of motion for the statistical potentials, because this result contains both odd and even fractional numbers. Furthermore, we deduce the Noether theorem from the invariance of the effective action under the rotational transformations in 2-dimensional (x, y) plane. The result shows that the composite fermions have fractional spins and fractional statistics. These anomalous properties are given by the constraints for the statistical gauge potential.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Upshift of the fractional quantum Hall plateaux: evidence for repulsive scattering for composite fermions
    Wang, HS
    Chiu, YH
    Kim, GH
    Liang, CT
    Simmons, MY
    Ritchie, DA
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2004, 22 (1-3): : 135 - 137
  • [22] Structures for interacting composite fermions: Stripes, bubbles, and fractional quantum Hall effect
    Lee, SY
    Scarola, VW
    Jain, JK
    PHYSICAL REVIEW B, 2002, 66 (08) : 853361 - 8533613
  • [23] COMPOSITE FERMIONS AND THE ENERGY-GAP IN THE FRACTIONAL QUANTUM HALL-EFFECT
    BONESTEEL, NE
    PHYSICAL REVIEW B, 1995, 51 (15): : 9917 - 9921
  • [24] Composite Fermions: Motivation, Successes, and Application to Fractional Quantum Hall Effect in Graphene
    Jain, Jainendra
    SOLID STATE PHYSICS: PROCEEDINGS OF THE 55TH DAE SOLID STATE PHYSICS SYMPOSIUM 2010, PTS A AND B, 2011, 1349 : 5 - 5
  • [25] Phase diagram of fractional quantum Hall effect of composite fermions in multicomponent systems
    Balram, Ajit C.
    Toke, Csaba
    Wojs, A.
    Jain, J. K.
    PHYSICAL REVIEW B, 2015, 91 (04)
  • [26] Particle-hole symmetry and composite fermions in fractional quantum Hall states
    Nguyen, Dung Xuan
    Golkar, Siavash
    Roberts, Matthew M.
    Son, Dam Thanh
    PHYSICAL REVIEW B, 2018, 97 (19)
  • [28] Composite fermions in the fractional quantum hall effect: Transport at finite wave vector
    Mirlin, AD
    Wolfle, P
    PHYSICAL REVIEW LETTERS, 1997, 78 (19) : 3717 - 3720
  • [29] Composite fermions and Landau-level mixing in the fractional quantum Hall effect
    MelikAlaverdian, V
    Bonesteel, NE
    PHYSICAL REVIEW B, 1995, 52 (24): : 17032 - 17035
  • [30] SPECTROSCOPY OF THE FRACTIONAL QUANTUM HALL-EFFECT - MANIFESTATION OF FRACTIONAL CHARGES
    RASHBA, EI
    APALKOV, VM
    PORTNOI, ME
    JOURNAL OF LUMINESCENCE, 1994, 60-1 : 782 - 785