Molecular genetic analyses of abiotic stress responses during plant reproductive development

被引:47
|
作者
Ma, Xinwei [1 ,2 ]
Su, Zhao [1 ,2 ]
Ma, Hong [1 ,2 ]
机构
[1] Penn State Univ, Dept Biol, University Pk, PA 16802 USA
[2] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
关键词
Abiotic stresses; large-scale studies; plants; reproductive development; transcriptional regulation; UNFOLDED PROTEIN RESPONSE; ABSCISIC-ACID SENSITIVITY; HIGH-TEMPERATURE STRESS; HEAT-SHOCK PROTEINS; RICE ORYZA-SATIVA; ARABIDOPSIS-THALIANA; DROUGHT STRESS; FLOWERING TIME; COLD STRESS; POLLEN DEVELOPMENT;
D O I
10.1093/jxb/eraa089
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant responses to abiotic stresses during vegetative growth have been extensively studied for many years. Daily environmental fluctuations can have dramatic effects on plant vegetative growth at multiple levels, resulting in molecular, cellular, physiological, and morphological changes. Plants are even more sensitive to environmental changes during reproductive stages. However, much less is known about how plants respond to abiotic stresses during reproduction. Fortunately, recent advances in this field have begun to provide clues about these important processes, which promise further understanding and a potential contribution to maximize crop yield under adverse environments. Here we summarize information from several plants, focusing on the possible mechanisms that plants use to cope with different types of abiotic stresses during reproductive development, and present a tentative molecular portrait of plant acclimation during reproductive stages. Additionally, we discuss strategies that plants use to balance between survival and productivity, with some comparison among different plants that have adapted to distinct environments.
引用
收藏
页码:2870 / 2885
页数:16
相关论文
共 50 条
  • [21] Lipid signalling in plant responses to abiotic stress
    Hou, Quancan
    Ufer, Guido
    Bartels, Dorothea
    PLANT CELL AND ENVIRONMENT, 2016, 39 (05): : 1029 - 1048
  • [22] Are karrikins involved in plant abiotic stress responses?
    Li, Weiqiang
    Tran, Lam-Son Phan
    TRENDS IN PLANT SCIENCE, 2015, 20 (09) : 535 - 538
  • [23] Alternative splicing in plant abiotic stress responses
    Punzo, Paola
    Grillo, Stefania
    Batelli, Giorgia
    BIOCHEMICAL SOCIETY TRANSACTIONS, 2020, 48 (05) : 2117 - 2126
  • [24] RNA regulation in plant abiotic stress responses
    Nakaminami, Kentaro
    Matsui, Akihiro
    Shinozaki, Kazuo
    Seki, Motoaki
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS, 2012, 1819 (02): : 149 - 153
  • [25] Epigenetic regulation in plant abiotic stress responses
    Chang, Ya-Nan
    Zhu, Chen
    Jiang, Jing
    Zhang, Huiming
    Zhu, Jian-Kang
    Duan, Cheng-Guo
    JOURNAL OF INTEGRATIVE PLANT BIOLOGY, 2020, 62 (05) : 563 - 580
  • [26] Plant hormone regulation of abiotic stress responses
    Rainer Waadt
    Charles A. Seller
    Po-Kai Hsu
    Yohei Takahashi
    Shintaro Munemasa
    Julian I. Schroeder
    Nature Reviews Molecular Cell Biology, 2022, 23 : 680 - 694
  • [27] SNAREs in Plant Biotic and Abiotic Stress Responses
    Kwon, Chian
    Lee, Jae-Hoon
    Yun, Hye Sup
    MOLECULES AND CELLS, 2020, 43 (06) : 501 - 508
  • [28] Plant hormone regulation of abiotic stress responses
    Waadt, Rainer
    Seller, Charles A.
    Hsu, Po-Kai
    Takahashi, Yohei
    Munemasa, Shintaro
    Schroeder, Julian I.
    NATURE REVIEWS MOLECULAR CELL BIOLOGY, 2022, 23 (10) : 680 - 694
  • [29] Epigenetic regulation in plant abiotic stress responses
    Ya-Nan Chang
    Chen Zhu
    Jing Jiang
    Huiming Zhang
    Jian-Kang Zhu
    Cheng-Guo Duan
    JournalofIntegrativePlantBiology, 2020, 62 (05) : 563 - 580
  • [30] Plant polyamines in reproductive activity and response to abiotic stress
    Galston, AW
    KaurSawhney, R
    Altabella, T
    Tiburcio, AF
    BOTANICA ACTA, 1997, 110 (03): : 197 - 207