Generation of switchable domain wall and Cubic-Quintic nonlinear Schrodinger equation dark pulse

被引:26
|
作者
Tiu, Z. C. [1 ,2 ,3 ]
Suthaskumar, M. [2 ,3 ]
Zarei, A. [1 ,2 ]
Tan, S. J. [3 ]
Ahmad, H. [2 ]
Harun, S. W. [2 ]
机构
[1] Univ Malaya, Dept Elect Engn, Fac Engn, Kuala Lumpur 50603, Malaysia
[2] Univ Malaya, Photon Res Ctr, Kuala Lumpur 50603, Malaysia
[3] KDU Univ Coll, Utropolis, Glenmarie, Sch Engn, Shah Alam 40150, Selangor Darul, Malaysia
来源
关键词
Nonlinear polarization rotation; Dark pulse; Ultrafast laser; FIBER RING LASER; SOLITONS;
D O I
10.1016/j.optlastec.2015.04.010
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A switchable domain-wall (DW) and Cubic-Quintic nonlinear Schrodinger equation (CQNLSE) dark soliton pulse generation are demonstrated in Erbium-doped fiber laser (EDFL) for the first time. The DW pulse train operates at 1575 nm with a fundamental repetition rate of 1.52 MHz and pulse width of 203 ns as the pump power is increased above the threshold pump power of 80 mW. The highest pulse energy of 2.24 nJ is obtained at the maximum pump power of 140 mW. CQNLSE pulse can also be realized from the same cavity by adjusting the polarization state but at a higher threshold pump power of 104 mW. The repetition rate and pulse width of the CQNLSE dark pulses are obtained at 1.52 MHz and 219 ns, respectively. The highest energy of 0.58 nJ is obtained for the CQNLSE pulse at pump power of 140 mW. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:127 / 129
页数:3
相关论文
共 50 条
  • [31] Coupled cubic-quintic nonlinear Schrodinger equation: novel bright-dark rogue waves and dynamics
    Yan, Xue-Wei
    Zhang, Jiefang
    NONLINEAR DYNAMICS, 2020, 100 (04) : 3733 - 3743
  • [32] Jacobian elliptic function solutions of the discrete cubic-quintic nonlinear Schrodinger equation
    Tiofack, G. C. Latchio
    Mohamadou, Alidou
    Kofane, T. C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (23) : 6133 - 6145
  • [33] Modulational instability and discrete breathers in the discrete cubic-quintic nonlinear Schrodinger equation
    Abdullaev, F. Kh.
    Bouketir, A.
    Messikh, A.
    Umarov, B. A.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 232 (01) : 54 - 61
  • [34] Modulational instability in the cubic-quintic nonlinear Schrodinger equation through the variational approach
    Ndzana, Fabien I. I.
    Mohamadou, Alidou
    Kofane, Timoleon Crepin
    OPTICS COMMUNICATIONS, 2007, 275 (02) : 421 - 428
  • [35] Quantum fluctuations around bistable solitons in the cubic-quintic nonlinear Schrodinger equation
    Lee, RK
    Lia, YC
    Malomed, BA
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (09) : 367 - 372
  • [36] New Exact Solutions for High Dispersive Cubic-Quintic Nonlinear Schrodinger Equation
    Xie, Yongan
    Tang, Shengqiang
    JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [37] PERIODIC WAVES FOR THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION: EXISTENCE AND ORBITAL STABILITY
    Alves, Giovana
    Natali, Fabio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2023, 28 (02): : 854 - 871
  • [38] Existence, stability, and scattering of bright vortices in the cubic-quintic nonlinear Schrodinger equation
    Caplan, R. M.
    Carretero-Gonzalez, R.
    Kevrekidis, P. G.
    Malomed, B. A.
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2012, 82 (07) : 1150 - 1171
  • [39] Dispersive shock waves propagating in the cubic-quintic derivative nonlinear Schrodinger equation
    Kengne, E.
    Lakhssassi, A.
    Nguyen-Ba, T.
    Vaillancourt, R.
    CANADIAN JOURNAL OF PHYSICS, 2010, 88 (01) : 55 - 66
  • [40] STABILITY OF EXACT SOLUTIONS OF THE CUBIC-QUINTIC NONLINEAR SCHRODINGER EQUATION WITH PERIODIC POTENTIAL
    Kengne, E.
    Vaillancourt, R.
    NONLINEAR OSCILLATIONS, 2011, 13 (04): : 569 - 583