Room temperature selective sensing of aligned Ni nanowires using impedance spectroscopy

被引:7
|
作者
Mohammadi, Masoumeh [1 ]
Fardindoost, Somayeh [2 ]
Zad, Azam Iraji [2 ,3 ]
Almasi-Kashi, Mohammad [1 ,4 ]
机构
[1] Univ Kashan, Inst Nanosci & Nanotechnol, Kashan 8731753153, Iran
[2] Sharif Univ Technol, Dept Phys, Azadi St, Tehran 113659161, Iran
[3] Sharif Univ Technol, Inst Nanosci & Nanotechnol, Azadi St, Tehran 111558639, Iran
[4] Univ Kashan, Dept Phys, Kashan 8731753153, Iran
关键词
nickel nanowires; anodic aluminum oxide; hard anodization; gas sensor; impedance spectroscopy; CAU-10 MOF MATERIALS; HIGH-PERFORMANCE; GAS SENSORS; GRAPHENE OXIDE; ETHANOL; NANOSTRUCTURES; FABRICATION; ACETONE; WATER; ZNO;
D O I
10.1088/2053-1591/ab66ac
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Room temperature gas sensing behavior of arrayed one-dimensional (1D) nickel nanowires (NiNWs) are investigated using impedance spectroscopy. Ni nanowires synthesized via electrochemical deposition method based on anodic aluminum oxide (AAO) templates. Their structural characterization verified by scanning electron microscopy (SEM), x-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FT-IR) analysis. Impedance spectroscopy as an essential technique utilized to understand the mechanism of gas interaction with the wires through the changes in their electronic behavior. Bode and Nyquist plots with the real and imaginary impedances are plotted versus frequency range of 500 Hz to 2 MHz at different relative humidity values (varying from 30% to 70%) and ethanol vapor concentrations (varying from 2 to 18 ppm). The equivalent circuits are proposed and simulated for impedance responses to both humidity and ethanol vapors. The impedance plots indicate the increase in resistance of the aligned nanowires at low frequencies by the adsorption of water and ethanol molecules.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Preparation of aligned Cu nanowires by room-temperature reduction of CuO nanowires in electron cyclotron resonance hydrogen plasma
    Qin, Yong
    Staedler, Thorsten
    Jiang, Xin
    NANOTECHNOLOGY, 2007, 18 (03)
  • [22] Room temperature impedance spectroscopy-based sensing of formaldehyde with porous TiO2 under UV illumination
    Liu, Lipeng
    Li, Xiaogan
    Dutta, Prabir K.
    Wang, Jing
    SENSORS AND ACTUATORS B-CHEMICAL, 2013, 185 : 1 - 9
  • [23] Impedance spectroscopy studies of KHSO4 above room temperature
    Diosa, JE
    Vargas, RA
    Albinsson, I
    Mellander, BE
    SOLID STATE IONICS, 2005, 176 (39-40) : 2913 - 2916
  • [24] Room-Temperature Catalyst Enables Selective Acetone Sensing
    Weber, Ines C.
    Wang, Chang-ting
    Guntner, Andreas T.
    MATERIALS, 2021, 14 (08)
  • [25] Hydrogen-selective sensing at room temperature with ZnO nanorods
    Wang, HT
    Kang, BS
    Ren, F
    Tien, LC
    Sadik, PW
    Norton, DP
    Pearton, SJ
    Lin, J
    APPLIED PHYSICS LETTERS, 2005, 86 (24) : 1 - 3
  • [26] Room temperature magnetoresistance of horizontally aligned Mn-doped ZnO nanowires on terrace edges
    Kim, Woo-Hee
    Son, Jong Yeog
    MATERIALS LETTERS, 2014, 133 : 101 - 104
  • [27] Glycerol mediated synthesis of silver nanowires for room temperature ammonia vapor sensing
    Shobin, L. R.
    Sastikumar, D.
    Manivannan, S.
    SENSORS AND ACTUATORS A-PHYSICAL, 2014, 214 : 74 - 80
  • [28] Room temperature CPP-giant magnetoresistance in Ni/Cu multilayered nanowires
    Mardaneh, Mohamad Reza
    Kashi, Mohammad Almasi
    Ghaffari, Maryam
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 894
  • [29] Room temperature CPP-giant magnetoresistance in Ni/Cu multilayered nanowires
    Mardaneh, Mohamad Reza
    Almasi Kashi, Mohammad
    Ghaffari, Maryam
    Journal of Alloys and Compounds, 2022, 894
  • [30] Gas sensing mechanism of ZnO:Na nanocrystals at room temperature using surface photovoltage spectroscopy
    Long Xiaoqin
    Aren, Havan
    Wang Zhan
    Liang Yuqing
    Pingte Wusha
    Wang Ziqiang
    Sun Yifei
    Yu Fei
    Yuan Huan
    CAILIAO GONGCHENG-JOURNAL OF MATERIALS ENGINEERING, 2024, 52 (02): : 218 - 226