Multipole composite spatial solitons: theory and experiment

被引:51
|
作者
Desyatnikov, AS [1 ]
Neshev, D
Ostrovskaya, EA
Kivshar, YS
McCarthy, G
Krolikowski, W
Luther-Davies, B
机构
[1] Australian Natl Univ, Res Sch Phys Sci & Engn, Nonlinear Phys Grp, Canberra, ACT 0200, Australia
[2] Australian Natl Univ, Res Sch Phys Sci & Engn, Laser Phys Ctr, Canberra, ACT 0200, Australia
关键词
D O I
10.1364/JOSAB.19.000586
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We discuss the properties of composite (or vector) spatial optical solitons created by the incoherent interaction of two optical beams and associated with higher-order modes guided by a soliton-induced waveguide in a bulk medium. Such stationary (2 + 1) -dimensional self-trapped localized structures include, in particular, vortex- and dipole-mode vector solitons and also incorporate higher-order multipole spatial solitons in a bulk medium, such as quadrupole solitons and necklace-type composite beams. We overview our theoretical and experimental results for the structure, formation, and stability of these self-trapped composite optical beams and also discuss the effects of anisotropy and of the nonlocality of the photorefractive nonlinearity on their properties. Additionally, we demonstrate, analytically and experimentally, that an array of the dipole-mode vector solitons can be generated as a result of the transverse instability of a quasi-one-dimensional two-hump soliton stripe in a saturable nonlinear optical medium. (C) 2002 Optical Society of America.
引用
收藏
页码:586 / 595
页数:10
相关论文
共 50 条
  • [21] Multipole-mode surface solitons
    Kartashov, Yaroslav V.
    Torner, Lluis
    [J]. OPTICS LETTERS, 2006, 31 (14) : 2172 - 2174
  • [22] Dynamics of counterpropagating multipole vector solitons
    Jovic, D
    Petrovic, M
    Belic, M
    Schröeder, J
    Jander, P
    Denz, C
    [J]. OPTICS EXPRESS, 2005, 13 (26): : 10717 - 10728
  • [23] Theory of spatial optical solitons in metallic nanowire materials
    Silveirinha, Mario G.
    [J]. PHYSICAL REVIEW B, 2013, 87 (23)
  • [24] SOLITONS IN A COMPOSITE HIGGS-MODEL OF ELECTROWEAK THEORY
    CRAIGIE, N
    KAHANA, S
    [J]. PHYSICAL REVIEW LETTERS, 1986, 57 (05) : 515 - 518
  • [25] FORMATION OF SOLITONS IN TRANSITIONAL BOUNDARY-LAYERS - THEORY AND EXPERIMENT
    KACHANOV, YS
    RYZHOV, OS
    SMITH, FT
    [J]. JOURNAL OF FLUID MECHANICS, 1993, 251 : 273 - 297
  • [26] Rotating multipole vortex solitons in nonlocal media
    Buccoliero, Daniel
    Desyatnikov, Anton S.
    Krolikowski, Wieslaw
    Kivshar, Yuri S.
    [J]. ICONO 2007: NONLINEAR SPACE-TIME DYNAMICS, 2007, 6725
  • [27] Multipole vector solitons in nonlocal nonlinear media
    Kartashov, Yaroslav V.
    Torner, Lluis
    Vysloukh, Victor A.
    Mihalache, Dumitru
    [J]. OPTICS LETTERS, 2006, 31 (10) : 1483 - 1485
  • [28] Quantum theory of steady state photorefractive spatial solitons propagation
    Jiang, Jin-Huan
    Wang, Yong-Long
    Li, Zi-Ping
    [J]. Wuli Xuebao/Acta Physica Sinica, 2004, 53 (12): : 4070 - 4074
  • [29] SPATIAL POLARIZATION SOLITONS IN THE VECTOR THEORY OF SELF-FOCUSING
    MARCHEVSKY, FN
    STRIZHEVSKY, VL
    TURCHIN, YA
    [J]. IZVESTIYA AKADEMII NAUK SSSR SERIYA FIZICHESKAYA, 1991, 55 (02): : 346 - 350
  • [30] Kerr combs in microresonators: from chaos to solitons and from theory to experiment
    Gorodetsky, Michael L.
    Lobanov, Valery E.
    Lihachev, Grigory
    Pavlov, Nikolay
    Koptyaev, Sergey N.
    [J]. LASER RESONATORS, MICRORESONATORS, AND BEAM CONTROL XIX, 2017, 10090