Screening of desulfurization adsorbent in metal-organic frameworks: A classical density functional approach

被引:32
|
作者
Liu, Yu
Guo, Fangyuan
Hu, Jun
Zhao, Shuangliang
Liu, Honglai [1 ]
Hu, Ying
机构
[1] E China Univ Sci & Technol, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Desulfurization; Classical density functional theory; Metal-organic framework; Thermodynamics; Screening; CONJUGATE-GRADIENT METHOD; UNIVERSAL FORCE-FIELD; ORGANOSULFUR COMPOUNDS; DEEP DESULFURIZATION; SELECTIVE ADSORPTION; NANOPOROUS MATERIALS; GUARANTEED DESCENT; SULFUR; REMOVAL; STORAGE;
D O I
10.1016/j.ces.2015.06.036
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
High-throughput screening of desulfurization adsorbent has been implemented by introducing a classical density functional theory (CDFT). The screening is focused on the adsorption capacity of dibenzothiophene (DBT) in 458 types of metal-organic frameworks (MOFs). Comparing to the state of art desulfurization adsorbent, the best MOF for low concentration (BMLC) shows an uptake 27 times of HKUST-1 while the best MOF for high concentration (BMHC) shows an uptake twice of HKUST-1. Hierarchical porous structure has been found in BMLC and BMHC, respectively. According to the radial distribution function, a layered adsorption mechanism has been found in BMLC instead of BMHC; and the thermodynamic differences between BMLC and BMHC can be understood by this lamellar adsorption mechanism. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:170 / 177
页数:8
相关论文
共 50 条
  • [21] Sequestration of Radionuclides in Metal-Organic Frameworks from Density Functional Theory Calculations
    Pandey, Shubham
    Jia, Zhilin
    Demaske, Brian
    Ejegbavwo, Otega A.
    Setyawan, Wahyu
    Henager, Charles H., Jr.
    Shustova, Natalia
    Phillpot, Simon R.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (44): : 26842 - 26855
  • [22] Detecting Lewis acid sites in metal-organic frameworks by density functional theory
    Lawrence, Arputham Shophia
    Sivakumar, Balasubramanian
    Dhakshinamoorthy, Amarajothi
    [J]. MOLECULAR CATALYSIS, 2022, 517
  • [23] Transforming metal-organic frameworks into functional materials
    Mendes, Ricardo F.
    Paz, Filipe A. Almeida
    [J]. INORGANIC CHEMISTRY FRONTIERS, 2015, 2 (06): : 495 - 509
  • [24] Ligand design for functional metal-organic frameworks
    Almeida Paz, Filipe A.
    Klinowski, Jacek
    Vilela, Sergio M. F.
    Tome, Joao P. C.
    Cavaleiro, Jose A. S.
    Rocha, Joao
    [J]. CHEMICAL SOCIETY REVIEWS, 2012, 41 (03) : 1088 - 1110
  • [25] Functional metal-organic frameworks for catalytic applications
    Xu, Chunping
    Fang, Ruiqi
    Luque, Rafael
    Chen, Liyu
    Li, Yingwei
    [J]. COORDINATION CHEMISTRY REVIEWS, 2019, 388 : 268 - 292
  • [26] Applications of Functional Metal-Organic Frameworks in Biosensors
    Du, Liping
    Chen, Wei
    Zhu, Ping
    Tian, Yulan
    Chen, Yating
    Wu, Chunsheng
    [J]. BIOTECHNOLOGY JOURNAL, 2021, 16 (02)
  • [27] Functional Mixed Metal-Organic Frameworks with Metalloligands
    Das, Madhab C.
    Xiang, Shengchang
    Zhang, Zhangjing
    Chen, Banglin
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (45) : 10510 - 10520
  • [28] Development of Photonic Functional Metal-Organic Frameworks
    Cui, Yuanjing
    Qian, Guodong
    [J]. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society, 2021, 49 (02): : 285 - 295
  • [29] Metal-organic frameworks: Structures and functional applications
    Jiao, Long
    Seow, Joanne Yen Ru
    Skinner, William Scott
    Wang, Zhiyong U.
    Jiang, Hai-Long
    [J]. MATERIALS TODAY, 2019, 27 : 43 - 68
  • [30] Mapping of Functional Groups in Metal-Organic Frameworks
    Kong, Xueqian
    Deng, Hexiang
    Yan, Fangyong
    Kim, Jihan
    Swisher, Joseph A.
    Smit, Berend
    Yaghi, Omar M.
    Reimer, Jeffrey A.
    [J]. SCIENCE, 2013, 341 (6148) : 882 - 885