Impact of GPU Memory Access Patterns on FDTD

被引:0
|
作者
Livesey, Matthew [1 ]
Stack, James F., Jr. [1 ]
Costen, Fumie [1 ]
Nanri, Takeshi [1 ]
Nakashima, Norimasa [1 ]
Fujino, Seiji [1 ]
机构
[1] Accenture, Manchester M21 9HE, Lancs, England
关键词
GRAPHICS;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The application of General Purpose computing on a GPU is an effective way to accelerate the FDTD method. This work explores the different domain decomposition techniques from the literature and extends the theoretically best approach with additional flexibility. We examine the performance on both Tesla and Fermi architecture GPUs and identify the best way to determine the GPU parameters for the proposed method.
引用
收藏
页数:2
相关论文
共 50 条
  • [31] A Memory-Access-Efficient Implementation of the Approximate String Matching Algorithm on GPU
    Nunes, Lucas S. N.
    Bordim, J. L.
    Nakano, K.
    Ito, Y.
    2016 FOURTH INTERNATIONAL SYMPOSIUM ON COMPUTING AND NETWORKING (CANDAR), 2016, : 483 - 489
  • [32] Optimizing non-coalesced memory access for irregular applications with GPU computing
    Ran Zheng
    Yuan-dong Liu
    Hai Jin
    Frontiers of Information Technology & Electronic Engineering, 2020, 21 : 1285 - 1301
  • [33] Exposing Memory Access Patterns to Improve Instruction and Memory Efficiency in GPUs
    Crago, Neal C.
    Stephenson, Mark
    Keckler, Stephen W.
    ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2019, 15 (04)
  • [34] XPlacer: Automatic Analysis of Data Access Patterns on Heterogeneous CPU/GPU Systems
    Pirkelbauer, Peter
    Lin, Pei-Hung
    Vanderbruggen, Tristan
    Liao, Chunhua
    2020 IEEE 34TH INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM IPDPS 2020, 2020, : 997 - 1007
  • [35] MEMORY ACCESS PATTERNS OF PARALLEL SCIENTIFIC PROGRAMS.
    Darema-Rogers, F.
    Pfister, G.F.
    So, K.
    Performance Evaluation Review, 1987, 15 (01): : 46 - 58
  • [36] MAPS: Understanding Metadata Access Patterns in Secure Memory
    Lehman, Tamara Silbergleit
    Hilton, Andrew D.
    Lee, Benjamin C.
    2018 IEEE INTERNATIONAL SYMPOSIUM ON PERFORMANCE ANALYSIS OF SYSTEMS AND SOFTWARE (ISPASS), 2018, : 33 - 43
  • [37] On-line prediction of multiprocessor memory access patterns
    Sakr, MF
    Giles, CL
    Levitan, SP
    Horne, BG
    Maggini, M
    Chiarulli, DM
    ICNN - 1996 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS. 1-4, 1996, : 1564 - 1569
  • [38] On the Detectability of Control Flow Using Memory Access Patterns
    Buhren, Robert
    Hetzelt, Felicitas
    Pirnay, Niklas
    PROCEEDINGS OF THE 3RD WORKSHOP ON SYSTEM SOFTWARE FOR TRUSTED EXECUTION (SYSTEX'18), 2018, : 48 - 53
  • [39] CuMAPz: A Tool to Analyze Memory Access Patterns in CUDA
    Kim, Yooseong
    Shrivastava, Aviral
    PROCEEDINGS OF THE 48TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2011, : 128 - 133
  • [40] POSTER: SPiDRE: Accelerating Sparse Memory Access Patterns
    Barredo, Adrian
    Beard, Jonathan C.
    Moreto, Miquel
    2019 28TH INTERNATIONAL CONFERENCE ON PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES (PACT 2019), 2019, : 482 - 483