CATEGORICAL ABSTRACT ALGEBRAIC LOGIC WEAKLY REFERENTIAL π-INSTITUTIONS

被引:0
|
作者
Voutsadakis, George [1 ]
机构
[1] Lake Super State Univ, Sch Math & Comp Sci, Sault Sainte Marie, MI 49783 USA
关键词
Referential Logics; Selfextensional Logics; Referential Semantics; Referential pi-institutions; Selfextensional pi-institutions;
D O I
10.4467/20842589RM.16.007.5284
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Wojcicki introduced in the late 1970s the concept of a referential semantics for propositional logics. Referential semantics incorporate features of the Kripke possible world semantics for modal logics into the realm of algebraic and matrix semantics of arbitrary sentential logics. A well-known theorem of Wojcicki asserts that a logic has a referential semantics if and only if it is selfextensional. A second theorem of Wojcicki asserts that a logic has a weakly referential semantics if and only if it is weakly self-extensional. We formulate and prove an analog of this theorem in the categorical setting. We show that a pi-institution has a weakly referential semantics if and only if it is weakly self-extensional.
引用
收藏
页码:91 / 103
页数:13
相关论文
共 50 条
  • [41] WHAT IS ABSTRACT ALGEBRAIC LOGIC?
    Rivieccio, Umberto
    EPISTEMOLOGIA, 2009, 32 (02): : 255 - 278
  • [42] A Survey of Abstract Algebraic Logic
    J. M. Font
    R. Jansana
    D. Pigozzi
    Studia Logica, 2003, 74 (1-2) : 13 - 97
  • [43] Categorical abstract algebraic logic: The criterion for deductive equivalence (vol 49, pg 347, 2003)
    Voutsadakis, G
    MATHEMATICAL LOGIC QUARTERLY, 2005, 51 (06) : 644 - 644
  • [44] Amalgamation and interpolation in abstract algebraic logic
    Czelakowski, J
    Pigozzi, D
    MODELS, ALGEBRAS, AND PROOFS, 1999, 203 : 187 - 265
  • [45] Update to "a survey of abstract algebraic logic"
    Font J.M.
    Jansana R.
    Pigozzi D.
    Studia Logica, 2009, 91 (1) : 125 - 130
  • [46] COMPATIBILITY OPERATORS IN ABSTRACT ALGEBRAIC LOGIC
    Albuquerque, Hugo
    Maria Font, Josep
    Jansana, Ramon
    JOURNAL OF SYMBOLIC LOGIC, 2016, 81 (02) : 417 - 462
  • [47] QUASI-VARIETIES IN ABSTRACT ALGEBRAIC INSTITUTIONS
    TARLECKI, A
    JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1986, 33 (03) : 333 - 360
  • [48] ON THE EXISTENCE OF FREE MODELS IN ABSTRACT ALGEBRAIC INSTITUTIONS
    TARLECKI, A
    THEORETICAL COMPUTER SCIENCE, 1985, 37 (03) : 269 - 304
  • [49] AGI from the Perspectives of Categorical Logic and Algebraic Geometry
    Yan, King-Yin
    ARTIFICIAL GENERAL INTELLIGENCE, AGI 2024, 2024, 14951 : 210 - 217
  • [50] A Note on Natural Extensions in Abstract Algebraic Logic
    Petr Cintula
    Carles Noguera
    Studia Logica, 2015, 103 : 815 - 823