EULER-LAGRANGE EQUATIONS ON CANTOR SETS

被引:0
|
作者
Baleanu, Dumitru [1 ,2 ,3 ]
Yang, Xiao-Jun [4 ,5 ]
机构
[1] Cankaya Univ, Fac Arts & Sci, TR-06530 Ankara, Turkey
[2] King Abdulaziz Univ, Fac Engn, Dept Chem & Mat Engn, Jeddah 21589, Saudi Arabia
[3] Inst Space Sci, Magurele, Romania
[4] China Univ Min & Technol, Dept Math & Mech, Xuzhou 221008, Jiangsu, Peoples R China
[5] Zhengzhou Normal Univ, Inst Software Sci, Zhengzhou 450044, Peoples R China
关键词
HAMILTON FORMALISM; TIME; FORMULATION; CALCULUS; MOTION;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this manuscript, we investigated the Euler-Lagrange equations on Cantor sets within the local fractional operators. To illustrate the proposed method two examples are presented.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A Polyconvex Integrand; Euler-Lagrange Equations and Uniqueness of Equilibrium
    Awi, Romeo
    Gangbo, Wilfrid
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2014, 214 (01) : 143 - 182
  • [42] Canonical form of Euler-Lagrange equations and gauge symmetries
    Geyer, B
    Gitman, DM
    Tyutin, IV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (23): : 6587 - 6609
  • [43] Variational problems with fractional derivatives: Euler-Lagrange equations
    Atanackovic, T. M.
    Konjik, S.
    Pilipovic, S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2008, 41 (09)
  • [44] Existence of a weak solution for fractional Euler-Lagrange equations
    Bourdin, Loic
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 239 - 251
  • [45] FROM EULER-LAGRANGE EQUATIONS TO CANONICAL NONLINEAR CONNECTIONS
    Neagu, Mircea
    ARCHIVUM MATHEMATICUM, 2006, 42 (03): : 255 - 263
  • [46] AV-differential geometry: Euler-Lagrange equations
    Grabowska, Katarzyna
    Grabowski, Janusz
    Urbanski, Pawel
    JOURNAL OF GEOMETRY AND PHYSICS, 2007, 57 (10) : 1984 - 1998
  • [47] Removable singularities of the Euler-Lagrange equations on a Hilbert manifold
    Pnevmatikos, S
    Pliakis, D
    Andreadis, I
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 877 - 882
  • [48] On exact solutions of a class of fractional Euler-Lagrange equations
    Baleanu, Dumitru
    Trujillo, Juan J.
    NONLINEAR DYNAMICS, 2008, 52 (04) : 331 - 335
  • [49] EULER-LAGRANGE RADICAL FUNCTIONAL EQUATIONS WITH SOLUTION AND STABILITY
    Ramdoss, Murali
    Pachaiyappan, Divyakumari
    Dutta, Hemen
    MISKOLC MATHEMATICAL NOTES, 2020, 21 (01) : 351 - 365
  • [50] Elementary work, Newton law and Euler-Lagrange equations
    Udriste, Constantin
    Dogaru, Oltin
    Tevy, Ionel
    Bala, Dumitru
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2010, 15 (02): : 100 - 107