Using remote sensing data and cluster algorithms to structure cities

被引:2
|
作者
Tiessen, Thomas [1 ]
Friesen, John [1 ]
Rausch, Lea [1 ]
Pelz, Peter E. [1 ]
机构
[1] Tech Univ Darmstadt, Chair Fluid Syst, Darmstadt, Germany
关键词
clustering; k-medoid; CHAMELEON; DBSCAN; slums;
D O I
10.1109/jurse.2019.8808973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing urban population and the resulting lack of reliable water, energy and food supply is a big challenge for cities especially in informal settlements (slums). In order to plan new, better supply structures for cities, it is useful to subdivide the cities into sub structures. This subdivision can be performed by using cluster algorithms. In this paper we subdivide the slums in Dhaka using three different cluster methods and evaluate them with different indicators regarding their suitability for infrastructure planning.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Evapotranspiration estimation using remote sensing data
    Olioso, A
    Jacob, F
    HOUILLE BLANCHE-REVUE INTERNATIONALE DE L EAU, 2002, (01): : 62 - 67
  • [42] Visualization of hierarchical structure of multispectral remote sensing data
    Mikheev, PV
    Kheeroug, SS
    Rogova, TV
    IGARSS '98 - 1998 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, PROCEEDINGS VOLS 1-5: SENSING AND MANAGING THE ENVIRONMENT, 1998, : 1775 - 1777
  • [43] Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data
    Li Song
    Luyuan Wang
    Zheqing Yang
    Li He
    Ziheng Feng
    Jianzhao Duan
    Wei Feng
    Tiancai Guo
    The Crop Journal, 2022, 10 (05) : 1312 - 1322
  • [44] Spatio-Temporal Dynamics of Rangeland Transformation using machine learning algorithms and Remote Sensing data
    Wang, Ningde
    Naz, Iram
    Aslam, Rana Waqar
    Quddoos, Abdul
    Soufan, Walid
    Raza, Danish
    Ishaq, Tibra
    Ahmed, Bilal
    RANGELAND ECOLOGY & MANAGEMENT, 2024, 94 : 106 - 118
  • [45] Comparisons of Multi Resolution Based AI Training Data and Algorithms Using Remote Sensing Focus on Landcover
    Lee, Seong-Hyeok
    Lee, Moung-Jin
    FRONTIERS IN REMOTE SENSING, 2022, 3
  • [46] Comparison of algorithms for monitoring wheat powdery mildew using multi-angular remote sensing data
    Song, Li
    Wang, Luyuan
    Yang, Zheqing
    He, Li
    Feng, Ziheng
    Duan, Jianzhao
    Feng, Wei
    Guo, Tiancai
    CROP JOURNAL, 2022, 10 (05): : 1312 - 1322
  • [47] Estimation of chlorophyll content in radish leaves using hyperspectral remote sensing data and machine learning algorithms
    Nofrizal, Adenan Yandra
    Sonobe, Rei
    Yamashita, Hiroto
    Ikka, Takashi
    Morita, Akio
    REMOTE SENSING FOR AGRICULTURE, ECOSYSTEMS, AND HYDROLOGY XXIII, 2021, 11856
  • [48] Analyzing Cities with the Global Human Settlement Layer: A Methodology to Compare Urban Growth Using Remote Sensing Data
    Melchiorri, Michele
    Siragusa, Alice
    SMART AND SUSTAINABLE PLANNING FOR CITIES AND REGIONS, SSPCR 2017, 2018, : 151 - 165
  • [49] Mapping Urban Structure Types Based on Remote Sensing Data-A Universal and Adaptable Framework for Spatial Analyses of Cities
    Braun, Andreas
    Warth, Gebhard
    Bachofer, Felix
    Schultz, Michael
    Hochschild, Volker
    LAND, 2023, 12 (10)
  • [50] Data Processing in Grid Systems by Using Cluster Algorithms
    Norouzi, Monire
    Akbarpour, Shahin
    PROCEEDINGS OF 2013 IEEE 4TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS), 2012, : 309 - 312