Using remote sensing data and cluster algorithms to structure cities

被引:2
|
作者
Tiessen, Thomas [1 ]
Friesen, John [1 ]
Rausch, Lea [1 ]
Pelz, Peter E. [1 ]
机构
[1] Tech Univ Darmstadt, Chair Fluid Syst, Darmstadt, Germany
关键词
clustering; k-medoid; CHAMELEON; DBSCAN; slums;
D O I
10.1109/jurse.2019.8808973
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The increasing urban population and the resulting lack of reliable water, energy and food supply is a big challenge for cities especially in informal settlements (slums). In order to plan new, better supply structures for cities, it is useful to subdivide the cities into sub structures. This subdivision can be performed by using cluster algorithms. In this paper we subdivide the slums in Dhaka using three different cluster methods and evaluate them with different indicators regarding their suitability for infrastructure planning.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Cluster analysis of earth remote sensing data
    V. V. Asmus
    A. A. Buchnev
    V. P. Pyatkin
    Optoelectronics, Instrumentation and Data Processing, 2010, 46 (2) : 149 - 155
  • [2] Cluster Analysis of Earth Remote Sensing Data
    Asmus, V. V.
    Buchnev, A. A.
    Pyatkin, V. P.
    OPTOELECTRONICS INSTRUMENTATION AND DATA PROCESSING, 2010, 46 (02) : 149 - 155
  • [3] Fitting Chinese cities' population distributions using remote sensing satellite data
    Chen, Jiandong
    Fan, Wei
    Li, Ke
    Liu, Xin
    Song, Malin
    ECOLOGICAL INDICATORS, 2019, 98 : 327 - 333
  • [4] Intelligent crowd sensing pickpocketing group identification using remote sensing data for secure smart cities
    Zhang, Jing
    Fan, Ting
    Lang, Ding
    Xu, Yuguang
    Li, Hong-an
    Li, Xuewen
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13777 - 13797
  • [5] Comparison of data mining algorithms in remote sensing using Lidar data fusion and feature selection
    Rozario, Papia
    Gomes, Rahul
    2021 IEEE INTERNATIONAL CONFERENCE ON ELECTRO INFORMATION TECHNOLOGY (EIT), 2021, : 236 - 243
  • [6] Hierarchical cluster algorithm for remote sensing data of earth
    Sidorova V.S.
    Pattern Recognition and Image Analysis, 2012, 22 (2) : 373 - 379
  • [7] Cluster analysis of planetary remote sensing spectral data
    Marzo, GA
    Roush, TL
    Blanco, A
    Fonti, S
    Orofino, V
    JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2006, 111 (E3)
  • [8] Multitarget Detection Algorithms for Multitemporal Remote Sensing Data
    Xi, Yanxin
    Ji, Luyan
    Yang, Weitun
    Geng, Xiurui
    Zhao, Yongchao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Remote Sensing Data Fusion Algorithms with Parallel Computing
    Akoguz, Alper
    Ozdemir, Adnan
    Yucel, Meric
    Pinar, Sedef Kent
    Bagis, Serdar
    Kartal, Mesut
    PROCEEDINGS OF 6TH INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN SPACE TECHNOLOGIES (RAST 2013), 2013, : 87 - 92
  • [10] A comparison on texture classification algorithms for remote sensing data
    Xu, P
    Dai, M
    Chan, AK
    IGARSS 2004: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM PROCEEDINGS, VOLS 1-7: SCIENCE FOR SOCIETY: EXPLORING AND MANAGING A CHANGING PLANET, 2004, : 1057 - 1060