Parametric and non-parametric gradient matching for network inference: a comparison

被引:3
|
作者
Dony, Leander [1 ,2 ,3 ]
He, Fei [1 ,4 ]
Stumpf, Michael P. H. [1 ,5 ,6 ]
机构
[1] Imperial Coll London, Dept Life Sci, Ctr Integrat Syst Biol & Bioinformat, London SW7 2AZ, England
[2] Helmholtz Ctr Munich, German Res Ctr Environm Hlth, Inst Computat Biol, D-85764 Neuherberg, Germany
[3] Max Planck Inst Psychiat, Kraepelinstr 2-10, D-80804 Munich, Germany
[4] Coventry Univ, Sch Comp Elect & Math, Coventry CV1 2JH, W Midlands, England
[5] Univ Melbourne, Sch BioSci, Melbourne Integrat Genom, Melbourne, Vic 3010, Australia
[6] Univ Melbourne, Sch Math & Stat, Melbourne, Vic 3010, Australia
基金
英国生物技术与生命科学研究理事会;
关键词
Systems biology; Gradient matching; Gene regulation; Network inference; REGULATORY NETWORKS; SYSTEMS; MODELS;
D O I
10.1186/s12859-018-2590-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundReverse engineering of gene regulatory networks from time series gene-expression data is a challenging problem, not only because of the vast sets of candidate interactions but also due to the stochastic nature of gene expression. We limit our analysis to nonlinear differential equation based inference methods. In order to avoid the computational cost of large-scale simulations, a two-step Gaussian process interpolation based gradient matching approach has been proposed to solve differential equations approximately.ResultsWe apply a gradient matching inference approach to a large number of candidate models, including parametric differential equations or their corresponding non-parametric representations, we evaluate the network inference performance under various settings for different inference objectives. We use model averaging, based on the Bayesian Information Criterion (BIC), to combine the different inferences. The performance of different inference approaches is evaluated using area under the precision-recall curves.ConclusionsWe found that parametric methods can provide comparable, and often improved inference compared to non-parametric methods; the latter, however, require no kinetic information and are computationally more efficient.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Matching as Non-Parametric Preprocessing for the Estimation of Equivalence Scales
    Dudel, Christian
    Garbuszus, Jan Marvin
    Ott, Notburga
    Werding, Martin
    JAHRBUCHER FUR NATIONALOKONOMIE UND STATISTIK, 2017, 237 (02): : 115 - 141
  • [42] COMPARISON OF PARAMETRIC AND NON-PARAMETRIC STATISTICAL-ANALYSIS OF PERIODONTAL INDEXES
    MCHUGH, RB
    PIHLSTROM, B
    JOURNAL OF DENTAL RESEARCH, 1984, 63 : 343 - 343
  • [43] Productivity change in European banking: A comparison of parametric and non-parametric approaches
    Casu, B
    Girardone, C
    Molyneux, P
    JOURNAL OF BANKING & FINANCE, 2004, 28 (10) : 2521 - 2540
  • [44] Software Reliability Prediction Modeling: A Comparison of Parametric and Non-Parametric Modeling
    Choudhary, Ankur
    Baghel, Anurag Singh
    Sangwan, Om Prakash
    2016 6TH INTERNATIONAL CONFERENCE - CLOUD SYSTEM AND BIG DATA ENGINEERING (CONFLUENCE), 2016, : 649 - 653
  • [45] Comparison of a non-parametric and parametric method for interharmonic estimation in PV systems
    Ravindran, Vineetha
    Busatto, Tatiano
    Ronnberg, Sarah K.
    Bollen, Math H. J.
    2019 IEEE MILAN POWERTECH, 2019,
  • [46] Comparison of a neural network and a non-parametric classifier for grain kernel identification
    Paliwal, J
    Visen, NS
    Jayas, DS
    White, NDG
    BIOSYSTEMS ENGINEERING, 2003, 85 (04) : 405 - 413
  • [47] A Non-parametric Discrete Fracture Network Model
    Santiago Gómez
    José A. Sanchidrián
    Pablo Segarra
    Maurizio Bernardini
    Rock Mechanics and Rock Engineering, 2023, 56 : 3255 - 3278
  • [48] A Non-parametric Discrete Fracture Network Model
    Gomez, Santiago
    Sanchidrian, Jose A.
    Segarra, Pablo
    Bernardini, Maurizio
    ROCK MECHANICS AND ROCK ENGINEERING, 2023, 56 (05) : 3255 - 3278
  • [49] A non-parametric comparison algorithm for simulation optimization
    Alkhamis, TM
    Ahmed, MA
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL XIV, PROCEEDINGS: COMPUTER SCIENCE, ENGINEERING AND APPLICATIONS, 2003, : 402 - 407
  • [50] A Bayesian non-parametric comparison of two treatments
    Damien, P
    Walker, S
    SCANDINAVIAN JOURNAL OF STATISTICS, 2002, 29 (01) : 51 - 56