Bridge estimation of the probability density at a point

被引:0
|
作者
Mira, A
Nicholls, G
机构
[1] Univ Insubria, Dept Econ, I-21100 Varese, Italy
[2] Univ Auckland, Dept Math, Auckland, New Zealand
关键词
Bayes factor; marginal likelihood; Markov chain Monte Carlo; Metropolis-Hastings algorithms;
D O I
暂无
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Bridge estimation, as described by Meng and Wong in 1996, is used to estimate the value taken by a probability density at a point in the state space. When the normalisation of the prior density is known, this value may be used to estimate a Bayes factor. It is shown that the multi-block Metropolis-Hastings estimators of Chib and Jeliazkov (2001) are bridge sampling estimators. This identification leads to estimators for the quantity of interest which may be substantially more efficient.
引用
收藏
页码:603 / 612
页数:10
相关论文
共 50 条
  • [21] ESTIMATION OF A DENSITY FUNCTION AT A POINT
    WEISS, L
    WOLFOWIT.J
    ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1967, 7 (05): : 327 - &
  • [22] Quantum density of probability at the classical peculiar point
    Buonanno, L
    Renna, M
    Pavlotsky, IP
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1996, 10 (11): : 1285 - 1291
  • [23] Pounding probability analysis of a long-span asymmetric suspension bridge based on a kernel density estimation method
    Shi X.
    Ding Z.
    Jia H.
    Zheng S.
    Li S.
    Zhendong yu Chongji/Journal of Vibration and Shock, 2023, 42 (16): : 269 - 277
  • [24] Simple and effective probability density estimation and classification
    Jirina, Marcel
    Jirina, Marcel, Jr.
    2006 SICE-ICASE INTERNATIONAL JOINT CONFERENCE, VOLS 1-13, 2006, : 2122 - +
  • [25] On the Riesz estimation of multivariate probability density functions
    Reyes, Camilo
    Ossandon, Sebastian
    Barrientos, Mauricio
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (16) : 9248 - 9265
  • [26] Maximum entropy approach to probability density estimation
    Tel Aviv Univ, Tel Aviv, Israel
    Int Conf Knowledge Based Intell Electron Syst Proc KES, (225-230):
  • [27] High throughput nonparametric probability density estimation
    Farmer, Jenny
    Jacobs, Donald
    PLOS ONE, 2018, 13 (05):
  • [28] A Histogram Transform for Probability Density Function Estimation
    Lopez-Rubio, Ezequiel
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (04) : 644 - 656
  • [29] Fast Locating With Global Probability Density Estimation
    Zhou Bin
    Zhang Hui
    Zhang Bochuan
    2013 25TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2013, : 3466 - 3471
  • [30] ESTIMATION OF A CERTAIN FUNCTIONAL OF A PROBABILITY DENSITY FUNCTION
    BHATTACH.GK
    ROUSSAS, GG
    ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (04): : 1361 - &