Generating correlated matrix exponential random variables

被引:1
|
作者
Fitzgerald, S
Place, J
van de Liefvoort, A
机构
[1] Univ Missouri, Sch Comp & Engn, Kansas City, MO 64110 USA
[2] Metropolitan State Univ, Dept Informat & Comp Sci, Minneapolis, MN 55403 USA
基金
美国国家科学基金会;
关键词
random variables; teletraffic models; autocorrelation linear algebra queueing theory; simulation;
D O I
10.1016/j.advengsoft.2005.04.006
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we focus on inter-arrival time autocorrelation and its impact on model performance. We present a technique to generate matrix exponential random variables that match first-order statistics (moments) and second-order statistics (autocorrelation) from an empirical distribution. We briefly explain the matrix exponential distribution and show that we can represent any empirical distribution arbitrarily closely as matrix exponential. We then show how we can incorporate an autocorrelation structure into our matrix exponential random variables using the autoregressive to anything technique. We present examples showing how we match first and second-order statistics from empirical distributions and finally we show that our autocorrelation matrix exponential random variables produce more accurate performance metrics from simulation models than traditional techniques. (C) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:75 / 84
页数:10
相关论文
共 50 条
  • [21] SUM OF EXPONENTIAL RANDOM-VARIABLES
    DEMARET, JC
    GARCET, A
    [J]. AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 1977, 31 (11): : 445 - 448
  • [22] EXPONENTIAL INEQUALITIES FOR BOUNDED RANDOM VARIABLES
    Huang, Guangyue
    Guo, Xin
    Du, Hongxia
    He, Yi
    Miao, Yu
    [J]. MATHEMATICA SLOVACA, 2015, 65 (06) : 1557 - 1570
  • [23] Characterization of the geometric and exponential random variables
    Dodunekova, R
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (08) : 1755 - 1765
  • [24] EXPONENTIAL INEQUALITIES FOR DEPENDENT RANDOM VARIABLES
    邵启满
    [J]. Acta Mathematicae Applicatae Sinica, 1990, (04) : 338 - 350
  • [25] On the exponential inequality for acceptable random variables
    Yuebao Wang
    Yawei Li
    Qingwu Gao
    [J]. Journal of Inequalities and Applications, 2011
  • [26] On the exponential inequality for acceptable random variables
    Wang, Yuebao
    Li, Yawei
    Gao, Qingwu
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [27] Exponential inequality for associated random variables
    Ioannides, DA
    Roussas, GG
    [J]. STATISTICS & PROBABILITY LETTERS, 1999, 42 (04) : 423 - 431
  • [28] Some peculiarities of exponential random variables
    Litvak, N
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (03) : 787 - 792
  • [29] Exponential convergence for sequences of random variables
    Sun, JM
    [J]. STATISTICS & PROBABILITY LETTERS, 1997, 34 (02) : 159 - 164
  • [30] GENERATING DISCRETE RANDOM VARIABLES IN A COMPUTER
    MARSAGLIA, G
    [J]. COMMUNICATIONS OF THE ACM, 1963, 6 (01) : 37 - 38