Substorm Current Wedge Revisited

被引:199
|
作者
Kepko, L. [1 ]
McPherron, R. L. [2 ]
Amm, O. [3 ]
Apatenkov, S. [4 ]
Baumjohann, W. [5 ]
Birn, J. [6 ]
Lester, M. [7 ]
Nakamura, R. [5 ]
Pulkkinen, T. I. [8 ]
Sergeev, V. [4 ]
机构
[1] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[2] Univ Calif Los Angeles, Los Angeles, CA USA
[3] Finnish Meteorol Inst, FIN-00101 Helsinki, Finland
[4] St Petersburg State Univ, St Petersburg 199034, Russia
[5] Austrian Acad Sci, Space Res Inst, A-8010 Graz, Austria
[6] Space Sci Inst, Boulder, CO USA
[7] Univ Leicester, Leicester, Leics, England
[8] Aalto Univ, Sch Elect Engn, Aalto, Finland
基金
奥地利科学基金会; 美国国家科学基金会; 芬兰科学院;
关键词
Substorm; Substorm current wedge; Field-aligned currents; Birkeland currents; FIELD-ALIGNED CURRENTS; EARTHWARD FLOW BURSTS; HEIGHT-INTEGRATED CONDUCTIVITY; INTERPLANETARY MAGNETIC-FIELD; WESTWARD TRAVELING SURGE; HIGH-SPEED FLOWS; POLAR-CAP AREA; PLASMA SHEET; CURRENT SYSTEM; MAGNETOSPHERIC SUBSTORMS;
D O I
10.1007/s11214-014-0124-9
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Almost 40 years ago the concept of the substorm current wedge was developed to explain the magnetic signatures observed on the ground and in geosynchronous orbit during substorm expansion. In the ensuing decades new observations, including radar and low-altitude spacecraft, MHD simulations, and theoretical considerations have tremendously advanced our understanding of this system. The AMPTE/IRM, THEMIS and Cluster missions have added considerable observational knowledge, especially on the important role of fast flows in producing the stresses that generate the substorm current wedge. Recent detailed, multi-spacecraft, multi-instrument observations both in the magnetosphere and in the ionosphere have brought a wealth of new information about the details of the temporal evolution and structure of the current system. While the large-scale picture remains valid, the new details call for revision and an update of the original view. In this paper we briefly review the historical development of the substorm current wedge, review recent in situ and ground-based observations and theoretical work, and discuss the current active research areas. We conclude with a revised, time-dependent picture of the substorm current wedge that follows its evolution from the initial substorm flows through substorm expansion and recovery.
引用
收藏
页码:1 / 46
页数:46
相关论文
共 50 条
  • [31] In situ spatiotemporal measurements of the detailed azimuthal substructure of the substorm current wedge
    Forsyth, C.
    Fazakerley, A. N.
    Rae, I. J.
    Watt, C. E. J.
    Murphy, K.
    Wild, J. A.
    Karlsson, T.
    Mutel, R.
    Owen, C. J.
    Ergun, R.
    Masson, A.
    Berthomier, M.
    Donovan, E.
    Frey, H. U.
    Matzka, J.
    Stolle, C.
    Zhang, Y.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (02) : 927 - 946
  • [32] Tailward progression of magnetotail acceleration centers: Relationship to substorm current wedge
    Angelopoulos, V
    Mitchell, DG
    McEntire, RW
    Williams, DJ
    Lui, ATY
    Krimigis, SM
    Decker, RB
    Christon, SP
    Kokubun, S
    Yamamoto, T
    Saito, Y
    Mukai, T
    Mozer, FS
    Tsuruda, K
    Reeves, GD
    Hughes, WJ
    FriisChristensen, E
    Troshichev, O
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A11) : 24599 - 24619
  • [33] Event study combining magnetospheric and ionospheric perspectives of the substorm current wedge modeling
    Sergeev, V. A.
    Nikolaev, A. V.
    Kubyshkina, M. V.
    Tsyganenko, N. A.
    Singer, H. J.
    Rodriguez, J. V.
    Angelopoulos, V.
    Nakamura, R.
    Milan, S. E.
    Coxon, J. C.
    Anderson, B. J.
    Korth, H.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2014, 119 (12) : 9714 - 9728
  • [34] Comparison of UV optical signatures with the substorm current wedge as predicted by an inversion algorithm
    Sergeev, VA
    Vagina, LI
    Elphinstone, RD
    Murphree, JS
    Hearn, DJ
    Cogger, LL
    Johnson, ML
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1996, 101 (A2) : 2615 - 2627
  • [35] A numerical simulation of the Pi2 pulsations associated with the substorm current wedge
    Fujita, S
    Nakata, H
    Itonaga, M
    Yoshikawa, A
    Mizuta, T
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2002, 107 (A3)
  • [36] Magnetotail Flux Accumulation Leads to Substorm Current Wedge Formation: A Case Study
    Chu, Xiangning
    McPherron, Robert
    Hsu, Tung-Shin
    Angelopoulos, Vassilis
    Weygand, James M.
    Liu, Jiang
    Bortnik, Jacob
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2021, 126 (01)
  • [37] Relative contributions of large-scale and wedgelet currents in the substorm current wedge
    Nishimura, Y.
    Lyons, L. R.
    Gabrielse, C.
    Weygand, J. M.
    Donovan, E. F.
    Angelopoulos, V
    EARTH PLANETS AND SPACE, 2020, 72 (01):
  • [38] Generalized Substorm Current Wedge Model: Two Types of Dipolarizations in the Inner Magnetosphere
    Ohtani, S.
    Motoba, T.
    Takahashi, K.
    Califf, S.
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2020, 125 (09)
  • [39] Relative contributions of large-scale and wedgelet currents in the substorm current wedge
    Y. Nishimura
    L. R. Lyons
    C. Gabrielse
    J. M. Weygand
    E. F. Donovan
    V. Angelopoulos
    Earth, Planets and Space, 72
  • [40] On the Contribution of Dipolarizing Flux Bundles to the Substorm Current Wedge and to Flux and Energy Transport
    Birn, J.
    Liu, J.
    Runov, A.
    Kepko, L.
    Angelopoulo, V
    JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2019, 124 (07) : 5408 - 5420