Renyi-Wehrl entropies as measures of localization in phase space

被引:67
|
作者
Gnutzmann, S [1 ]
Zyczkowski, K
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Polish Acad Sci, Centrum Fizyki Teoretyczej, Warsaw, Poland
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2001年 / 34卷 / 47期
关键词
D O I
10.1088/0305-4470/34/47/317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these Renyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states.
引用
收藏
页码:10123 / 10139
页数:17
相关论文
共 50 条
  • [21] Phase space entropies and global quantum phase space organization: a two-dimensional anharmonic system
    Groh, G
    Korsch, HJ
    Schweizer, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1998, 31 (33): : 6897 - 6910
  • [22] Phase transitions in the Renyi entropies of a 2+1D large-N interacting vector model
    Hampapura, Harsha R.
    Lawrence, Albion
    Stanojevic, Stefan
    PHYSICAL REVIEW B, 2019, 100 (13)
  • [23] Localization of the photon on phase space
    Brooke, JA
    Schroeck, FE
    JOURNAL OF MATHEMATICAL PHYSICS, 1996, 37 (12) : 5958 - 5986
  • [24] Phase properties of operator valued measures in phase space
    Subeesh, T.
    Sudhir, Vivishek
    JOURNAL OF MODERN OPTICS, 2013, 60 (06) : 503 - 508
  • [25] Transient phase-space localization
    Stokely, CL
    Dunning, FB
    Reinhold, CO
    Pattanayak, AK
    PHYSICAL REVIEW A, 2002, 65 (02): : 4
  • [26] Phase space localization of antisymmetric functions
    Salcedo, L. L.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
  • [27] EXPONENTS OF ENTROPY AND EPSILON-ENTROPIES FOR DOMINATED FAMILIES OF GAUSSIAN MEASURES ON A HILBERT-SPACE
    KOSKI, T
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1985, 19 (01) : 14 - 14
  • [28] Moments of the phase-space density, coincidence probabilities, and entropies of a multiparticle system
    Bialas, A.
    Multiparticle Dynamics, 2006, 828 : 119 - 123
  • [29] Phase-space Renyi entropy, complexity and thermodynamic picture of density functional theory
    Nagy, A.
    JOURNAL OF MATHEMATICAL CHEMISTRY, 2023, 61 (02) : 296 - 304
  • [30] Multiscale measures of phase-space trajectories
    Alberti, Tommaso
    Consolini, Giuseppe
    Ditlevsen, Peter D.
    Donner, Reik, V
    Quattrociocchi, Virgilio
    CHAOS, 2020, 30 (12)