Renyi-Wehrl entropies as measures of localization in phase space

被引:67
|
作者
Gnutzmann, S [1 ]
Zyczkowski, K
机构
[1] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
[2] Polish Acad Sci, Centrum Fizyki Teoretyczej, Warsaw, Poland
来源
关键词
D O I
10.1088/0305-4470/34/47/317
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We generalize the concept of the Wehrl entropy of quantum states which gives a basis-independent measure of their localization in phase space. We discuss the minimal values and the typical values of these Renyi-Wehrl entropies for pure states for spin systems. According to Lieb's conjecture the minimal values are provided by the spin coherent states. Though Lieb's conjecture remains unproven, we give new proofs of partial results that may be generalized for other systems. We also investigate random pure states and calculate the mean Renyi-Wehrl entropies averaged over the natural measure in the space of pure quantum states.
引用
收藏
页码:10123 / 10139
页数:17
相关论文
共 50 条
  • [1] Minimum Renyi and Wehrl entropies at the output of bosonic channels
    Giovannetti, V
    Lloyd, S
    Maccone, L
    Shapiro, JH
    Yen, BJ
    PHYSICAL REVIEW A, 2004, 70 (02): : 022328 - 1
  • [2] Inequalities for phase-space Renyi entropies
    Hornyak, I.
    Nagy, A.
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (05) : 1285 - 1290
  • [3] Renyi entropies and Fisher informations as measures of nonextensivity in a Tsallis setting
    Pennini, F
    Plastino, AR
    Plastino, A
    PHYSICA A, 1998, 258 (3-4): : 446 - 457
  • [4] Phase-space continuity equations for quantum decoherence, purity, von Neumann and Renyi entropies
    Bernardini, Alex E.
    Bertolami, Orfeu
    9TH INTERNATIONAL WORKSHOP DICE2018: SPACETIME - MATTER - QUANTUM MECHANICS, 2019, 1275
  • [5] Quantum localization measures in phase space
    Villasenor, D.
    Pilatowsky-Cameo, S.
    Bastarrachea-Magnani, M. A.
    Lerma-Hernandez, S.
    Hirsch, J. G.
    PHYSICAL REVIEW E, 2021, 103 (05)
  • [6] BOUNDS FOR THE RENYI ENTROPIES AND DYNAMIC PHASE-TRANSITIONS
    BENE, J
    SZEPFALUSY, P
    PHYSICAL REVIEW A, 1992, 46 (02): : 801 - 808
  • [7] Rydberg multidimensional states: Renyi and Shannon entropies in momentum space
    Aptekarev, A., I
    Belega, E. D.
    Dehesa, J. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2021, 54 (03)
  • [8] Identifying topological-band insulator transitions in silicene and other 2D gapped Dirac materials by means of Renyi-Wehrl entropy
    Calixto, M.
    Romera, E.
    EPL, 2015, 109 (04)
  • [9] Renyi entropies characterizing the shape and the extension of the phase space representation of quantum wave functions in disordered systems
    Varga, I
    Pipek, J
    PHYSICAL REVIEW E, 2003, 68 (02):
  • [10] Identifying the order of a quantum phase transition by means of Wehrl entropy in phase space
    Castanos, Octavio
    Calixto, Manuel
    Perez-Bernal, Francisco
    Romera, Elvira
    PHYSICAL REVIEW E, 2015, 92 (05):