Sparse Functional Relevance Learning in Generalized Learning Vector Quantization

被引:0
|
作者
Villmann, Thomas [1 ]
Kaestner, Marika [1 ]
机构
[1] Univ Appl Sci Mittweida, Dep Math Nat & Comp Sci, Tech Pl 17, D-09648 Mittweida, Germany
关键词
functional vector quantization; relevance learning; information theory; SELECTION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a functional relevance learning for learning vector quantization of functional data. The relevance profile is taken as a superposition of a set of basis functions depending on only a few parameters compared to standard relevance learning. Moreover, the sparsity of the superposition is achieved by an entropy based penalty function forcing sparsity.
引用
收藏
页码:79 / 89
页数:11
相关论文
共 50 条
  • [21] Learning vector quantization
    Kohonen, T.
    Neural Networks, 1988, 1 (1 SUPPL)
  • [22] Admire LVQ—Adaptive Distance Measures in Relevance Learning Vector Quantization
    Michael Biehl
    KI - Künstliche Intelligenz, 2012, 26 (4) : 391 - 395
  • [23] Learning Vector Quantization classification with local relevance determination for medical data
    Hammer, B.
    Villmann, T.
    Schleif, F. -M.
    Albani, C.
    Hermann, W.
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING - ICAISC 2006, PROCEEDINGS, 2006, 4029 : 603 - 612
  • [24] Analysis of Flow Cytometry Data by Matrix Relevance Learning Vector Quantization
    Biehl, Michael
    Bunte, Kerstin
    Schneider, Petra
    PLOS ONE, 2013, 8 (03):
  • [25] Inference of High-Order Epistatic Interactions Using Generalized Relevance Learning Vector Quantization with Parametric Adjustment
    Barbosa de Araujo, Flavia Roberta
    Guimaraes, Katia Silva
    2016 IEEE 28TH INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE (ICTAI 2016), 2016, : 648 - 654
  • [26] Adaptive Tangent Distances in Generalized Learning Vector Quantization for Transformation and Distortion Invariant Classification Learning
    Saralajew, Sascha
    Villmann, Thomas
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 2672 - 2679
  • [27] Sparse Bayesian Adversarial Learning Using Relevance Vector Machine Ensembles
    Zhou, Yan
    Kantarcioglu, Murat
    Thuraisingham, Bhavani
    12TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2012), 2012, : 1206 - 1211
  • [28] Using a sparse learning relevance vector machine in facial expression recognition
    Wong, W. S.
    Chan, W.
    Datcu, D.
    Rothkrantz, L. J. M.
    EUROMEDIA '2006, 2006, : 33 - +
  • [29] Growing generalized learning vector quantization with local neighborhood adaptation rule
    Qin, AK
    Suganthan, PN
    2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 524 - 529
  • [30] A NEW CLASSIFICATION ALGORITHM: OPTIMALLY GENERALIZED LEARNING VECTOR QUANTIZATION (OGLVQ)
    Temel, T.
    NEURAL NETWORK WORLD, 2017, 27 (06) : 569 - 576