Performance of greedy ordering heuristics for sparse Cholesky factorization

被引:20
|
作者
Ng, EG [1 ]
Raghavan, P
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
关键词
sparse matrix ordering; minimum degree; minimum deficiency; greedy heuristics;
D O I
10.1137/S0895479897319313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Greedy algorithms for ordering sparse matrices for Cholesky factorization can be based on different metrics. Minimum degree, a popular and effective greedy ordering scheme, minimizes the number of nonzero entries in the rank-1 update (degree) at each step of the factorization. Alternatively, minimum deficiency minimizes the number of nonzero entries introduced (deficiency) at each step of the factorization. In this paper we develop two new heuristics: modified minimum deficiency (MMDF) and modified multiple minimum degree (MMMD). The former uses a metric similar to deficiency while the latter uses a degree-like metric. Our experiments reveal that on the average, MMDF orderings result in 21% fewer operations to factor than minimum degree; MMMD orderings result in 15% fewer operations to factor than minimum degree. MMMD requires on the average 7-13% more time than minimum degree, while MMDF requires on the average 33-34% more time than minimum degree.
引用
收藏
页码:902 / 914
页数:13
相关论文
共 50 条
  • [21] Implementation of Parallel Sparse Cholesky Factorization on GPU
    Zou, Dan
    Dou, Yong
    [J]. PROCEEDINGS OF 2012 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND NETWORK TECHNOLOGY (ICCSNT 2012), 2012, : 2228 - 2232
  • [22] Sparse Cholesky Factorization on FPGA Using Parameterized Model
    Sun, Yichun
    Liu, Hengzhu
    Zhou, Tong
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [23] A PARALLEL ALGORITHM FOR SPARSE SYMBOLIC CHOLESKY FACTORIZATION ON A MULTIPROCESSOR
    ZMIJEWSKI, E
    GILBERT, JR
    [J]. PARALLEL COMPUTING, 1988, 7 (02) : 199 - 210
  • [24] Accelerating Sparse Cholesky Factorization on Sunway Manycore Architecture
    Li, Mingzhen
    Liu, Yi
    Yang, Hailong
    Luan, Zhongzhi
    Gan, Lin
    Yang, Guangwen
    Qian, Depei
    [J]. IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, 2020, 31 (07) : 1636 - 1650
  • [25] Optimization of a statically partitioned hypermatrix sparse Cholesky factorization
    Herrero, Jose R.
    Navarro, Juan J.
    [J]. APPLIED PARALLEL COMPUTING: STATE OF THE ART IN SCIENTIFIC COMPUTING, 2006, 3732 : 798 - 807
  • [26] Multiple-rank modifications of a sparse Cholesky factorization
    Davis, TA
    Hager, WW
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2001, 22 (04) : 997 - 1013
  • [27] Dynamic Parallelization Strategies for Multifrontal Sparse Cholesky Factorization
    Lebedev, Sergey
    Akhmedzhanov, Dmitry
    Kozinov, Evgeniy
    Meyerov, Iosif
    Pirova, Anna
    Sysoyev, Alexander
    [J]. PARALLEL COMPUTING TECHNOLOGIES (PACT 2015), 2015, 9251 : 68 - 79
  • [28] Supernodal sparse Cholesky factorization on graphics processing units
    Zou, Dan
    Dou, Yong
    Guo, Song
    Li, Rongchun
    Deng, Lin
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2014, 26 (16): : 2713 - 2726
  • [29] SPARSE CHOLESKY FACTORIZATION BY KULLBACK-LEIBLER MINIMIZATION
    Schaefer, Florian
    Katzfuss, Matthias
    Owhadi, Houman
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (03): : A2019 - A2046
  • [30] COMMUNICATION RESULTS FOR PARALLEL SPARSE CHOLESKY FACTORIZATION ON A HYPERCUBE
    GEORGE, A
    LIU, JWH
    NG, E
    [J]. PARALLEL COMPUTING, 1989, 10 (03) : 287 - 298