Performance of greedy ordering heuristics for sparse Cholesky factorization

被引:20
|
作者
Ng, EG [1 ]
Raghavan, P
机构
[1] Oak Ridge Natl Lab, Div Math & Comp Sci, Oak Ridge, TN 37831 USA
[2] Univ Tennessee, Dept Comp Sci, Knoxville, TN 37996 USA
关键词
sparse matrix ordering; minimum degree; minimum deficiency; greedy heuristics;
D O I
10.1137/S0895479897319313
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Greedy algorithms for ordering sparse matrices for Cholesky factorization can be based on different metrics. Minimum degree, a popular and effective greedy ordering scheme, minimizes the number of nonzero entries in the rank-1 update (degree) at each step of the factorization. Alternatively, minimum deficiency minimizes the number of nonzero entries introduced (deficiency) at each step of the factorization. In this paper we develop two new heuristics: modified minimum deficiency (MMDF) and modified multiple minimum degree (MMMD). The former uses a metric similar to deficiency while the latter uses a degree-like metric. Our experiments reveal that on the average, MMDF orderings result in 21% fewer operations to factor than minimum degree; MMMD orderings result in 15% fewer operations to factor than minimum degree. MMMD requires on the average 7-13% more time than minimum degree, while MMDF requires on the average 33-34% more time than minimum degree.
引用
收藏
页码:902 / 914
页数:13
相关论文
共 50 条
  • [1] Scalability of sparse Cholesky factorization
    Rauber, T
    Rünger, G
    Scholtes, C
    [J]. INTERNATIONAL JOURNAL OF HIGH SPEED COMPUTING, 1999, 10 (01): : 19 - 52
  • [2] Sparse Cholesky factorization on GPU
    Zou, Dan
    Dou, Yong
    Guo, Song
    [J]. Jisuanji Xuebao/Chinese Journal of Computers, 2014, 37 (07): : 1445 - 1454
  • [3] Modifying a sparse Cholesky factorization
    Davis, TA
    Hager, WW
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1999, 20 (03) : 606 - 627
  • [4] Parallel sparse Cholesky factorization
    Monien, B
    Schulze, J
    [J]. SOLVING IRREGULARLY STRUCTURED PROBLEMS IN PARALLEL, 1997, 1253 : 255 - 272
  • [5] Parallel sparse Cholesky factorization
    Schulze, J
    [J]. MULTISCALE PHENOMENA AND THEIR SIMULATION, 1997, : 292 - 296
  • [6] RETRACTED: A Hybrid Ordering Scheme for Efficient Sparse Cholesky Factorization (Retracted Article)
    Yao, Lu
    Wang, Zhenghua
    Li, Zongzhe
    Cao, Wei
    Wang, Yongxian
    [J]. 2011 INTERNATIONAL CONFERENCE ON ENERGY AND ENVIRONMENTAL SCIENCE-ICEES 2011, 2011, 11
  • [7] Row modifications of a sparse Cholesky factorization
    Davis, TA
    Hager, WW
    [J]. SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2005, 26 (03) : 621 - 639
  • [8] Accelerating sparse Cholesky factorization on GPUs
    Rennich, Steven C.
    Stosic, Darko
    Davis, Timothy A.
    [J]. PARALLEL COMPUTING, 2016, 59 : 140 - 150
  • [9] Finding optimal ordering of sparse matrices for column-oriented parallel Cholesky factorization
    Lin, WY
    [J]. JOURNAL OF SUPERCOMPUTING, 2003, 24 (03): : 259 - 277
  • [10] HIGHLY PARALLEL SPARSE CHOLESKY FACTORIZATION
    GILBERT, JR
    SCHREIBER, R
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1992, 13 (05): : 1151 - 1172