Efficient Homology-Directed Repair with Circular Single-Stranded DNA Donors

被引:18
|
作者
Iyer, Sukanya [1 ]
Mir, Aamir [2 ,8 ]
Vega-Badillo, Joel [2 ]
Roscoe, Benjamin P. [1 ,9 ]
Ibraheim, Raed [2 ,8 ]
Zhu, Lihua Julie [1 ,3 ]
Lee, Jooyoung [2 ,10 ]
Liu, Pengpeng [1 ]
Luk, Kevin [1 ,12 ]
Mintzer, Esther [1 ,11 ]
Guo, Dongsheng [4 ]
Soares de Brito, Josias [1 ]
Emerson Jr, Charles P. [4 ]
Zamore, Phillip D. [2 ,5 ]
Sontheimer, Erik J. [2 ,6 ,7 ,13 ]
Wolfe, Scot A. [1 ,7 ,14 ]
机构
[1] Univ Massachusetts, Chan Med Sch, Dept Mol Cell & Canc Biol, Worcester, MA USA
[2] Univ Massachusetts, RNA Therapeut Inst, Chan Med Sch, Worcester, MA USA
[3] Univ Massachusetts, Chan Med Sch, Program Bioinformat & Integrat Biol, Worcester, MA USA
[4] Univ Massachusetts, Chan Med Sch, Dept Neurol, Wellstone Program, Worcester, MA USA
[5] Univ Massachusetts, Howard Hughes Med Inst, Chan Med Sch, Worcester, MA USA
[6] Univ Massachusetts, Chan Med Sch, Program Mol Med, Worcester, MA USA
[7] Univ Massachusetts, Li Weibo Inst Rare Dis Res, Chan Med Sch, Worcester, MA USA
[8] Tessera Therapeut, Somerville, MA USA
[9] Repertoire Immune Med, Cambridge, MA USA
[10] Vertex Pharmaceut, Boston, MA USA
[11] Harvard Med Sch, Boston, MA USA
[12] Excis BioTherapeut, Cambridge, MA USA
[13] Univ Massachusetts, RNA Therapeut Inst, Chan Med Sch, 364 Plantat St, Worcester, MA 01605 USA
[14] Univ Massachusetts, Chan Med Sch, Dept Mol Cell & Canc Biol, LRB 619,364 Plantat St, Worcester, MA 01605 USA
来源
CRISPR JOURNAL | 2022年 / 5卷 / 05期
基金
美国国家卫生研究院;
关键词
REVERSE-TRANSCRIPTASE; HUMAN-CELLS; STEM-CELLS; DUAL-RNA; KNOCK-IN; GENOME; CAS9; CRISPR; ENDONUCLEASE; GENERATION;
D O I
10.1089/crispr.2022.0058
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
While genome editing has been revolutionized by the advent of CRISPR-based nucleases, difficulties in achieving efficient, nuclease-mediated, homology-directed repair (HDR) still limit many applications. Commonly used DNA donors such as plasmids suffer from low HDR efficiencies in many cell types, as well as integration at unintended sites. In contrast, single-stranded DNA (ssDNA) donors can produce efficient HDR with minimal off-target integration. In this study, we describe the use of ssDNA phage to efficiently and inexpensively produce long circular ssDNA (cssDNA) donors. These cssDNA donors serve as efficient HDR templates when used with Cas9 or Cas12a, with integration frequencies superior to linear ssDNA (lssDNA) donors. To evaluate the relative efficiencies of imprecise and precise repair for a suite of different Cas9 or Cas12a nucleases, we have developed a modified traffic light reporter (TLR) system (TLR-multi-Cas variant 1 [MCV1]) that permits side-by-side comparisons of different nuclease systems. We used this system to assess editing and HDR efficiencies of different nuclease platforms with distinct DNA donor types. We then extended the analysis of DNA donor types to evaluate efficiencies of fluorescent tag knockins at endogenous sites in HEK293T and K562 cells. Our results show that cssDNA templates produce efficient and robust insertion of reporter tags. Targeting efficiency is high, allowing production of biallelic integrants using cssDNA donors. cssDNA donors also outcompete lssDNA donors in template-driven repair at the target site. These data demonstrate that circular donors provide an efficient, cost-effective method to achieve knockins in mammalian cell lines.
引用
收藏
页码:685 / 701
页数:17
相关论文
共 50 条
  • [21] Development of transgenic Daphnia magna for visualizing homology-directed repair of DNA
    Fatimah, Rizky Mutiara
    Adhitama, Nikko
    Kato, Yasuhiko
    Watanabe, Hajime
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [22] Efficient single copy integration via homology-directed repair (scHDR) by 5'modification of large DNA donor fragments in mice
    Medert, Rebekka
    Thumberger, Thomas
    Tavhelidse-Suck, Tinatini
    Hub, Tobias
    Kellner, Tanja
    Oguchi, Yoko
    Dlugosz, Sascha
    Zimmermann, Frank
    Wittbrodt, Joachim
    Freichel, Marc
    NUCLEIC ACIDS RESEARCH, 2023, 51 (03) : E14
  • [23] Simple embryo injection of long single-stranded donor templates with theCRISPR/Cas9 system leads to homology-directed repair inXenopus tropicalisandXenopus laevis
    Nakayama, Takuya
    Grainger, Robert M.
    Cha, Sang-Wook
    GENESIS, 2020, 58 (06)
  • [24] Homology-Directed Repair in Zebrafish: Witchcraft and Wizardry?
    Prill, Kendal
    Dawson, John F.
    FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [25] Homology-directed repair in mouse mammary tissue
    Kass, Elizabeth
    Moynahan, Mary Ellen
    Jasin, Maria
    CANCER RESEARCH, 2015, 75
  • [26] Viruses with Circular Single-Stranded DNA Genomes Are Everywhere!
    Shulman, L. M.
    Davidson, I.
    ANNUAL REVIEW OF VIROLOGY, VOL 4, 2017, 4 : 159 - 180
  • [27] Genomic attributes of homology-directed DNA repair deficiency in metastatic prostate cancer
    De Sarkar, Navonil
    Dasgupta, Sayan
    Chatterjee, Payel
    Coleman, Ilsa
    Ha, Gavin
    Ang, Lisa S.
    Kohlbrenner, Emily A.
    Frank, Sander B.
    Nunez, Talina A.
    Salipante, Stephen J.
    Corey, Eva
    Morrissey, Colm
    Van Allen, Eliezer
    Schweizer, Michael T.
    Haffner, Michael C.
    Patel, Radhika
    Hanratty, Brian
    Lucas, Jared M.
    Dumpit, Ruth F.
    Pritchard, Colin C.
    Montgomery, Robert B.
    Nelson, Peter S.
    JCI INSIGHT, 2021, 16 (23)
  • [28] Chimeric RNA:DNA TracrRNA Improves Homology-Directed Repair In Vitro and In Vivo
    Simone, Brandon W.
    Lee, Han B.
    Daby, Camden L.
    Ata, Hirotaka
    Restrepo-Castillo, Santiago
    Martinez-Galvez, Gabriel
    Kar, Bibekananda
    Gendron, William A. C.
    Clark, Karl J.
    Ekker, Stephen C.
    CRISPR JOURNAL, 2022, 5 (01): : 40 - 52
  • [29] DNA-Pairing and Annealing Processes in Homologous Recombination and Homology-Directed Repair
    Morrical, Scott W.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2015, 7 (02):
  • [30] Harnessing the effects of hypoxia-like inhibition on homology-directed DNA repair
    Altwerger, Gary
    Ghazarian, Maddie
    Glazer, Peter M.
    SEMINARS IN CANCER BIOLOGY, 2024, 98 : 11 - 18