Robust change point detection for linear regression models

被引:0
|
作者
Alin, Aylin [1 ]
Beyaztas, Ufuk [2 ]
Martin, Michael A. [3 ]
机构
[1] Dokuz Eylul Univ, Dept Stat, Izmir, Turkey
[2] Bartin Univ, Dept Stat, Bartin, Turkey
[3] Australian Natl Univ, Res Sch Finance, Actuarial Studies & Stat, Canberra, ACT, Australia
关键词
Bootstrap; Hellinger distance; Simple linear regression; Robustness; Weighted likelihood; SEGMENTED REGRESSION; INFERENCE; INTERSECTION; ESTIMATOR;
D O I
暂无
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Linear models incorporating change points are very common in many scientific fields including genetics, medicine, ecology, and finance. Outlying or unusual data points pose another challenge for fitting such models, as outlying data may impact change point detection and estimation. In this paper, we propose a robust approach to estimate the change point/s in a linear regression model in the presence of potential outlying point/s or with non-normal error structure. The statistic that we propose is a partial F statistic based on the weighted likelihood residuals. We examine its asymptotic properties and finite sample properties using both simulated data and in two real data sets.
引用
收藏
页码:203 / 213
页数:11
相关论文
共 50 条
  • [41] What is the Point of Change? Change Point Detection in Relational Event Models
    Kamalabad, Mahdi Shafiee
    Leenders, Roger
    Mulder, Joris
    [J]. SOCIAL NETWORKS, 2023, 74 : 166 - 181
  • [42] Comparison of Structural Change Tests in Linear Regression Models
    Kim, Jaehee
    [J]. KOREAN JOURNAL OF APPLIED STATISTICS, 2011, 24 (06) : 1197 - 1211
  • [43] Efficient multiple change point detection for high-dimensional generalized linear models
    Wang, Xianru
    Liu, Bin
    Zhang, Xinsheng
    Liu, Yufeng
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2023, 51 (02): : 596 - 629
  • [44] Consistent two-stage multiple change-point detection in linear models
    Jin, Baisuo
    Wu, Yuehua
    Shi, Xiaoping
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (02): : 161 - 179
  • [45] Change-Point Estimation in High Dimensional Linear Regression Models via Sparse Group Lasso
    Zhang, Bingwen
    Geng, Jun
    Lai, Lifeng
    [J]. 2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 815 - 821
  • [46] Change-point detection in a tensor regression model
    Ghannam, Mai
    Nkurunziza, Severien
    [J]. TEST, 2024, 33 (02) : 609 - 630
  • [47] Multiple change-point detection for regression curves
    Wang, Yunlong
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2024,
  • [48] Robust likelihood inference for regression parameters in partially linear models
    Shen, Chung-Wei
    Tsou, Tsung-Shan
    Balakrishnan, N.
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2011, 55 (04) : 1696 - 1714
  • [49] Robust Multiobjective Optimization using Regression Models and Linear Subproblems
    Goulart, Fillipe
    Borges, Silvio T.
    Takahashi, Fernanda C.
    Campelo, Felipe
    [J]. PROCEEDINGS OF THE 2017 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'17), 2017, : 569 - 576
  • [50] Robust estimation for semi-functional linear regression models
    Boente, Graciela
    Salibian-Barrera, Matias
    Vena, Pablo
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 152