On Fixed Points of Regular Mobius Transformations over Quaternions

被引:0
|
作者
Gentili, Graziano [1 ]
Vlacci, Fabio [1 ]
机构
[1] Univ Florence, Dipartimento Matemat U Dini, I-50134 Florence, Italy
来源
COMPLEX ANALYSIS AND DYNAMICAL SYSTEMS IV, PT 1: FUNCTION THEORY AND OPTIMIZATION | 2011年 / 553卷
关键词
POLYNOMIALS; THEOREM; ZEROS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a complete description of the fixed-point set for regular Mobius transformations of a quaternionic variable; furthermore we apply these results for the proof of a rigidity property for commuting hyperbolic regular Mobius transformations.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [21] Fixed points of a pair of asymptotically regular mappings
    B. K. Sharma
    B. S. Thakur
    Applied Mathematics and Mechanics, 1997, 18 : 771 - 778
  • [22] ON FIXED-POINTS OF ASYMPTOTICALLY REGULAR MAPPINGS
    RHOADES, BE
    SESSA, S
    KHAN, MS
    SWALEH, M
    JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1987, 43 : 328 - 346
  • [23] Regular variation of fixed points of the smoothing transform
    Liang, Xingang
    Liu, Quansheng
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2020, 130 (07) : 4104 - 4140
  • [24] Results on fixed points of asymptotically regular mappings
    Nesic, SC
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1999, 30 (05): : 491 - 494
  • [25] Boundary regular fixed points in Loewner theory
    Filippo Bracci
    Manuel D. Contreras
    Santiago Díaz-Madrigal
    Pavel Gumenyuk
    Annali di Matematica Pura ed Applicata (1923 -), 2015, 194 : 221 - 245
  • [26] Approximation of fixed points of metrically regular mappings
    Geoffroy, M. H.
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2006, 27 (5-6) : 565 - 581
  • [27] Rotations, Transformations, Left Quaternions, Right Quaternions?
    Renato Zanetti
    The Journal of the Astronautical Sciences, 2019, 66 : 361 - 381
  • [28] ROTATIONS, TRANSFORMATIONS, LEFT QUATERNIONS, RIGHT QUATERNIONS?
    Zanetti, Renato
    SPACEFLIGHT MECHANICS 2019, VOL 168, PTS I-IV, 2019, 168 : 1471 - 1489
  • [29] Rotations, Transformations, Left Quaternions, Right Quaternions?
    Zanetti, Renato
    JOURNAL OF THE ASTRONAUTICAL SCIENCES, 2019, 66 (03): : 361 - 381
  • [30] The continuous transformations of closed sets and their fixed points
    Lefschetz, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1930, 190 : 99 - 100