Limits of Teichmuller geodesics in the Universal Teichmuller space

被引:5
|
作者
Hakobyan, Hrant [1 ]
Saric, Dragomir [2 ,3 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66502 USA
[2] CUNY Queens Coll, Dept Math, 65-30 Kissena Blvd, Flushing, NY 11367 USA
[3] CUNY, Grad Ctr, Math PhD Program, 365 Fifth Ave, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
D O I
10.1112/plms.12125
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Thurston boundary of the universal Teichmuller space T(D) is the set of projective bounded measured laminations PMLbdd(D) of D. We prove that each Teichmuller geodesic ray in T(D) converges to a unique limit point in the Thurston boundary of T(D) in the weak topology. In particular, there is an open and dense set of geodesic rays, which have unique (weak(*)-)limits in the Thurston boundary. We also show that the main result is sharp by providing an example of a Teichmuller geodesic, which does not converge in the uniform weak topology.
引用
收藏
页码:1599 / 1628
页数:30
相关论文
共 50 条