Parikh Matrices and Parikh Rewriting Systems

被引:10
|
作者
Teh, Wen Chean [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
关键词
Parikh matrix; subword; injectivity problem; Parikh rewriting system; M-equivalence; SUBWORD OCCURRENCES; CORE WORDS; INJECTIVITY;
D O I
10.3233/FI-2016-1388
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Since the introduction of the Parikh matrix mapping, its injectivity problem is on top of the list of open problems in this topic. In 2010 Salomaa provided a solution for the ternary alphabet in terms of a Thue system with an additional feature called counter. This paper proposes the notion of a Parikh rewriting system as a generalization and systematization of Salomaa's result. It will be shown that every Parikh rewriting system induces a Thue system without counters that serves as a feasible solution to the injectivity problem.
引用
收藏
页码:305 / 320
页数:16
相关论文
共 50 条
  • [41] Elementary matrix equivalence and core transformation graphs for Parikh matrices
    Poovanandran, Ghajendran
    Teh, Wen Chean
    DISCRETE APPLIED MATHEMATICS, 2018, 251 : 276 - 289
  • [42] Parikh-friendly permutations and uniformly Parikh-friendly words
    Teh, Wen Chean
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2020, 76 : 208 - 219
  • [43] GENERALIZATIONS OF PARIKH MAPPINGS
    Cerny, Anton
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2010, 44 (02): : 209 - 228
  • [44] Algebraic Properties of Parikh Matrices of Words under an Extension of Thue Morphism
    Subramanian, K. G.
    Sriram, S.
    Venkatesan, Prasanna A. S.
    Nagar, A. K.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2019, 13 : 115 - 127
  • [45] Parikh mapping and iteration
    Dassow, J
    MULTISET PROCESSING: MATHEMATICAL, COMPUTER SCIENCE, AND MOLECULAR COMPUTING POINTS OF VIEW, 2001, 2235 : 85 - 101
  • [46] Bounded Parikh Automata
    Cadilhac, Michael
    Finkel, Alain
    McKenzie, Pierre
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2011, (63): : 93 - 102
  • [47] AFFINE PARIKH AUTOMATA
    Cadilhac, Michael
    Finkel, Alain
    McKenzie, Pierre
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2012, 46 (04): : 511 - 545
  • [48] ω—PARIKH映射定理
    马世骅
    山东大学学报(自然科学版), 1989, (02) : 27 - 30
  • [49] Tapan Parikh, 33
    Surowiecki, James
    TECHNOLOGY REVIEW, 2007, 110 (05) : 62 - 65
  • [50] BOUNDED PARIKH AUTOMATA
    Cadilhac, Michael
    Finkel, Alain
    Mckenzie, Pierre
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2012, 23 (08) : 1691 - 1709