A Dynamic Remote Sensing Data-Driven Approach for Oil Spill Simulation in the Sea

被引:8
|
作者
Yan, Jining [1 ,2 ]
Wang, Lizhe [1 ,3 ]
Chen, Lajiao [1 ]
Zhao, Lingjun [1 ,2 ]
Huang, Bomin [4 ]
机构
[1] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] China Univ Geosci, Sch Comp Sci, Wuhan 430074, Peoples R China
[4] Univ Wisconsin, Space Sci & Engn Ctr, Madison, WI 53706 USA
来源
REMOTE SENSING | 2015年 / 7卷 / 06期
基金
国家高技术研究发展计划(863计划);
关键词
GULF-OF-MEXICO; BOHAI SEA; APPLICATIONS SYSTEMS; IMAGES; SAR; SATELLITE; TRAJECTORIES; MANAGEMENT; ALGORITHM; MODEL;
D O I
10.3390/rs70607105
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In view of the fact that oil spill remote sensing could only generate the oil slick information at a specific time and that traditional oil spill simulation models were not designed to deal with dynamic conditions, a dynamic data-driven application system (DDDAS) was introduced. The DDDAS entails both the ability to incorporate additional data into an executing application and, in reverse, the ability of applications to dynamically steer the measurement process. Based on the DDDAS, combing a remote sensor system that detects oil spills with a numerical simulation, an integrated data processing, analysis, forecasting and emergency response system was established. Once an oil spill accident occurs, the DDDAS-based oil spill model receives information about the oil slick extracted from the dynamic remote sensor data in the simulation. Through comparison, information fusion and feedback updates, continuous and more precise oil spill simulation results can be obtained. Then, the simulation results can provide help for disaster control and clean-up. The Penglai, Xingang and Suizhong oil spill results showed our simulation model could increase the prediction accuracy and reduce the error caused by empirical parameters in existing simulation systems. Therefore, the DDDAS-based detection and simulation system can effectively improve oil spill simulation and diffusion forecasting, as well as provide decision-making information and technical support for emergency responses to oil spills.
引用
收藏
页码:7105 / 7125
页数:21
相关论文
共 50 条
  • [41] A Dynamic Data-Driven Approach for Operation Planning of Microgrids
    Shi, Xiaoran
    Damgacioglu, Haluk
    Celik, Nurcin
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2543 - 2552
  • [42] Data-driven approach to dynamic visual attention modelling
    Culibrk, Dubravko
    Sladojevic, Srdjan
    Riche, Nicolas
    Mancas, Matei
    Crnojevi, Vladimir
    OPTICS, PHOTONICS, AND DIGITAL TECHNOLOGIES FOR MULTIMEDIA APPLICATIONS II, 2012, 8436
  • [43] A Dynamic Clustering Approach to Data-Driven Assortment Personalization
    Bernstein, Fernando
    Modaresi, Sajad
    Saure, Denis
    MANAGEMENT SCIENCE, 2019, 65 (05) : 2095 - 2115
  • [44] A Bayesian Approach for Data-Driven Dynamic Equation Discovery
    Joshua S. North
    Christopher K. Wikle
    Erin M. Schliep
    Journal of Agricultural, Biological and Environmental Statistics, 2022, 27 : 728 - 747
  • [45] Dynamic decision analysis in medicine: a data-driven approach
    Cao, CG
    Leong, TY
    Leong, APK
    Seow, FC
    INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 1998, 51 (01) : 13 - 28
  • [46] Towards dynamic data-driven optimization of oil well placement
    Parashar, M
    Matossian, V
    Bangerth, W
    Klie, H
    Rutt, B
    Kurc, T
    Catalyurek, U
    Saltz, J
    Wheeler, MF
    COMPUTATIONAL SCIENCE - ICCS 2005, PT 2, 2005, 3515 : 656 - 663
  • [47] Data-driven multi-source remote sensing data fusion: progress and challenges
    Zhang L.
    He J.
    Yang Q.
    Xiao Y.
    Yuan Q.
    Cehui Xuebao/Acta Geodaetica et Cartographica Sinica, 2022, 51 (07): : 1317 - 1337
  • [48] A data-driven approach to sampling matrix selection for compressive sensing
    Farnell, Elin
    Kvinge, Henry
    Dixon, John P.
    Dupuis, Julia R.
    Kirby, Michael J.
    Peterson, Chris
    Schundler, Elizabeth C.
    Smith, Christian W.
    COMPUTATIONAL IMAGING V, 2020, 11396
  • [49] Simulation of oil transport after oil spill in the Bohai Sea
    Lei, L.
    He, W.
    APPLIED MECHANICS AND CIVIL ENGINEERING VI, 2017, : 133 - 136
  • [50] Dynamic Data-Driven Simulation of Pedestrian Movement with Automatic Validation
    Porzycki, Jakub
    Lubas, Robert
    Mycek, Marcin
    Was, Jaroslaw
    TRAFFIC AND GRANULAR FLOW '13, 2015, : 129 - 136