LOCAL AND GLOBAL EXISTENCE AND BLOW-UP OF SOLUTIONS TO A POLYTROPIC FILTRATION SYSTEM WITH NONLINEAR MEMORY AND NONLINEAR BOUNDARY CONDITIONS

被引:0
|
作者
Wang, Jian [1 ]
Su, Meng-Long [2 ]
Fang, Zhong-Bo [1 ]
机构
[1] Ocean Univ China, Dept Math, Qingdao 266100, Peoples R China
[2] Luoyang Normal Univ, Coll Math, Luoyang 471022, Peoples R China
关键词
nonlinear boundary value problem; nonlinear memory; polytropic filtration system; global existence; blow-up; REACTION-DIFFUSION SYSTEM; DEGENERATE; EQUATIONS;
D O I
10.4134/BKMS.2013.50.1.037
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with the behavior of positive solutions to the following nonlocal polytropic filtration system [GRAPHICS] with nonlinear boundary conditions u(x)vertical bar(x=a) = u(q11)v(q12)vertical bar(x=a), v(x)vertical bar(x=0) = 0, v(x)vertical bar(x=a) = u(q21)v(q22)vertical bar(x=a) and the initial data (u(0), v(0)), where m(1), m(2) > 1, P-1,P-2 > 1, l(11), l(12), l(21), l(22), q(11), q(12), q(21), q(22) > 0. Under appropriate hypotheses, the authors establish local theory of the solutions by a regularization method and prove that the solution either exists globally or blows up in finite time by using a comparison principle.
引用
收藏
页码:37 / 56
页数:20
相关论文
共 50 条