Multi-component Decomposition of Cosmic Infrared Background Fluctuations

被引:4
|
作者
Feng, Chang [1 ,2 ]
Cooray, Asantha [2 ]
Bock, Jamie [3 ,4 ]
Chang, Tzu-Ching [3 ,4 ,5 ]
Dore, Olivier [3 ,4 ]
Santos, Mario G. [6 ,7 ,8 ]
Silva, Marta B. [9 ]
Zemcov, Michael [4 ,10 ]
机构
[1] Univ Illinois, Dept Phys, 1110 W Green St, Urbana, IL 61801 USA
[2] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[3] CALTECH, 1200 E Calif Blvd, Pasadena, CA 91125 USA
[4] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[5] Acad Sinica, Inst Astron & Astrophys, Roosevelt Rd, Taipei 10617, Taiwan
[6] Univ Western Cape, Dept Phys & Astron, Cape Town, South Africa
[7] SKA South Africa, Pk,Pk Rd, ZA-7405 Pinelands, South Africa
[8] Univ Lisbon, Inst Astrofis & Ciencias Espaco, OAL, PT-1349018 Lisbon, Portugal
[9] Univ Groningen, Kapteyn Astron Inst, Landleven 12, NL-9747 AD Groningen, Netherlands
[10] Rochester Inst Technol, Rochester, NY 14623 USA
来源
ASTROPHYSICAL JOURNAL | 2019年 / 875卷 / 02期
基金
新加坡国家研究基金会;
关键词
dark ages; reionization; first stars; Galaxy: formation; infrared: diffuse background; methods: data analysis; stars: Population II; stars: Population III; LENSING POWER SPECTRUM; COVARIANCE;
D O I
10.3847/1538-4357/ab0d8e
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The near-infrared background between 0.5 and 2 mu m contains a wealth of information related to radiative processes in the universe. Infrared background anisotropies encode the redshift-weighted total emission over cosmic history, including any spatially diffuse and extended contributions. The anisotropy power spectrum is dominated by undetected galaxies at small angular scales and a diffuse background of Galactic emission at large angular scales. In addition to these known sources, the infrared background also arises from intrahalo light (IHL) at z < 3 associated with tidally stripped stars during galaxy mergers. Moreover, it contains information on the very first galaxies from the epoch of reionization (EoR). The EoR signal has a spectral energy distribution (SED) that goes to zero near optical wavelengths due to Lyman absorption, while other signals have spectra that vary smoothly with frequency. Due to differences in SEDs and spatial clustering, these components may be separated in a multi-wavelength-fluctuation experiment. To study the extent to which EoR fluctuations can be separated in the presence of IHL, and extragalactic and Galactic foregrounds, we develop a maximum likelihood technique that incorporates a full covariance matrix among all the frequencies at different angular scales. We apply this technique to simulated deep imaging data over a 2 x 45 deg(2) sky area from 0.75 to 5 mu m in 9 bands and find that such a "frequency tomography" can successfully reconstruct both the amplitude and spectral shape for representative EoR, IHL, and the foreground signals.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Two-dimensional multi-component photometric decomposition of CALIFA galaxies
    Mendez-Abreu, J.
    Ruiz-Lara, T.
    Sanchez-Menguiano, L.
    de Lorenzo-Caceres, A.
    Costantin, L.
    Catalan-Torrecilla, C.
    Florido, E.
    Aguerri, J. A. L.
    Bland-Hawthorn, J.
    Corsini, E. M.
    Dettmar, R. J.
    Galbany, L.
    Garcia-Benito, R.
    Marino, R. A.
    Marquez, I.
    Ortega-Minakata, R. A.
    Papaderos, P.
    Sanchez, S. F.
    Sanchez-Blazquez, P.
    Spekkens, K.
    van de Ven, G.
    Wild, V.
    Ziegler, B.
    ASTRONOMY & ASTROPHYSICS, 2017, 598
  • [42] Wavefield decomposition of multi-component OBS data to enhance the seismic signal
    Satyavani, N.
    Kumar, M. Ravi
    Sain, Kalachand
    JOURNAL OF INDIAN GEOPHYSICAL UNION, 2018, 22 (02): : 138 - 142
  • [43] Decomposition for Multi-Component Micro-Doppler Signal With Incomplete Data
    Wang, Huan
    Kang, Le
    Li, Kai-Ming
    Luo, Ying
    Zhang, Qun
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [44] Singular value decomposition-based segmentation of multi-component signals
    Rajan, Sreeraman
    Doraiswamib, Rajamani
    INDEPENDENT COMPONENT ANALYSES, WAVELETS, UNSUPERVISED NANO-BIOMIMETIC SENSORS, AND NEURAL NETWORKS V, 2007, 6576
  • [45] Nonlinear extension of inverse filters for decomposition of monotonic multi-component signals
    Institute of Polymer Mechanics, University of Latvia, 23 Aizkraukles Street, LV 1006 Riga, Latvia
    WSEAS Trans. Signal Process., 2008, 8 (442-451):
  • [46] Adaptive Bandwidth Fourier Decomposition Method for Multi-Component Signal Processing
    Deng, Minqiang
    Deng, Aidong
    Zhu, Jing
    Sun, Wenqing
    IEEE ACCESS, 2019, 7 : 109776 - 109791
  • [47] Demonstration of Cosmic Microwave Background Delensing Using the Cosmic Infrared Background
    Larsen, Patricia
    Challinor, Anthony
    Sherwin, Blake D.
    Mak, Daisy
    PHYSICAL REVIEW LETTERS, 2016, 117 (15)
  • [48] Superfluid density, Josephson relation and pairing fluctuations in a multi-component fermion superfluid
    Zhang, Yi-Cai
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [49] Multi-component IF estimation
    Hussain, ZM
    Boashash, B
    PROCEEDINGS OF THE TENTH IEEE WORKSHOP ON STATISTICAL SIGNAL AND ARRAY PROCESSING, 2000, : 559 - 563
  • [50] Superfluid density, Josephson relation and pairing fluctuations in a multi-component fermion superfluid
    Yi-Cai Zhang
    Scientific Reports, 11