Magnetism study on a triangular lattice antiferromagnet Cu2(OH)3Br

被引:9
|
作者
Zhao, Z. Y. [1 ]
Che, H. L. [2 ,3 ]
Chen, R. [4 ]
Wang, J. F. [4 ]
Sun, X. F. [2 ,3 ,5 ,6 ]
He, Z. Z. [1 ]
机构
[1] Chinese Acad Sci, Fujian Inst Res Struct Matter, State Key Lab Struct Chem, Fuzhou 350002, Fujian, Peoples R China
[2] Univ Sci & Technol China, Dept Phys, Hefei Natl Lab Phys Sci Microscale, Hefei 230026, Anhui, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Key Lab Strongly Coupled Quantum Matter Phys CAS, Hefei 230026, Anhui, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Natl High Magnet Field Ctr, Wuhan 430074, Hubei, Peoples R China
[5] Anhui Univ, Inst Phys Sci & Informat Technol, Hefei 230601, Anhui, Peoples R China
[6] Collaborat Innovat Ctr Adv Microstruct, Nanjing 210093, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
single-crystal growth; geometrical frustration; magnetic transition;
D O I
10.1088/1361-648X/ab1623
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Magnetism of Cu-2(OH)(3)Br single crystals based on a triangular lattice is studied by means of magnetic susceptibility, pulsed-field magnetization, and specific heat measurements. There are two inequivalent Cu2+ sites in an asymmetric unit. Both Cu2+ sublattices undergo a long-range antiferromagnetic (AFM) order at T-N = 9.3 K. Upon cooling, an anisotropy crossover from Heisenberg to XY behavior is observed below 7.5 K from the anisotropic magnetic susceptibility. The magnetic field applied within the XY plane induces a spin-flop transition of Cu2+ ions between 4.9 T and 5.3 T. With further increasing fields, the magnetic moment is gradually increased but is only about half of the saturation of a Cu2+ ion even in 30 T. The individual reorientation of the inequivalent Cu2+ spins under field is proposed to account for the magnetization behavior. The observed spin-flop transition is likely related to one Cu site, and the AFM coupling among the rest Cu spins is so strong that the 30 T field cannot overcome the anisotropy. The temperature dependence of the magnetic specific heat, which is well described by a sum of two gapped AFM contributions, is a further support for the proposed scenario.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] -9.81Br NMR in triangular lattice antiferromagnet CsCoBr3
    Uyeda, M.
    Kubo, T.
    Chiba, M.
    Ajiro, Y.
    Asano, T.
    Journal of Magnetism and Magnetic Materials, 1998, 177-181 (Pt 2): : 833 - 834
  • [22] Magnetism and multiferroicity of an isosceles triangular lattice antiferromagnet Sr3NiNb2O9
    Lee, M.
    Choi, E. S.
    Ma, J.
    Sinclair, R.
    Dela Cruz, C. R.
    Zhou, H. D.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (47)
  • [23] Crystal Growth, Structure, and Magnetic Properties of a Two-dimensional Triangular Lattice Magnet, Cu2(OH)3HCO2
    Fujita, Wataru
    Kikuchi, Koichi
    Mori, Wasuke
    CHEMISTRY-AN ASIAN JOURNAL, 2012, 7 (12) : 2830 - 2835
  • [24] 79,81Br NMR in triangular lattice antiferromagnet CsCoBr3
    Uyeda, M
    Kubo, T
    Chiba, M
    Ajiro, Y
    Asano, T
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 1998, 177 : 833 - 834
  • [25] Hydrogen/Deuterium Dynamics in Hydroxyl Salts Co2(OH)3Br/Co2(OD)3Br Revealed by Muon Spin Relaxation
    Xu, Xing-Liang
    Zheng, Xu-Guang
    Watanabe, Isao
    MATERIALS, 2019, 12 (13)
  • [26] Heterogeneousβ-Co(OH)2/Cu2(OH)3Clbifunctionalelectrocatalystforsuperiorconcurrentconversionofglycerolandnitrite
    Mingdan Wang
    Pengzuo Chen
    Huigang Wang
    Yanying Zhao
    Journal of Energy Chemistry, 2025, 104 (05) : 185 - 193
  • [27] Experimental evidence for a spin gap in the s=1/2 quantum antiferromagnet Cu2(OH)2CO3
    Janod, E
    Leonyuk, L
    Maltsev, V
    SOLID STATE COMMUNICATIONS, 2000, 116 (09) : 513 - 518
  • [28] Rb NMR study of the triangular lattice antiferromagnet RbNiCl3
    Muneta, S.
    Maegawa, S.
    Oyamada, A.
    Goto, T.
    Oohara, Y.
    Journal of Magnetism and Magnetic Materials, 1995, 140-144 (pt 3): : 1787 - 1788
  • [29] μSR study of the triangular-lattice antiferromagnet CsNiBr3
    Gubbens, PCM
    Visser, D
    de Réotier, PD
    Yaouanc, A
    Amato, A
    Cottrell, SP
    King, PJC
    PHYSICA B-CONDENSED MATTER, 2006, 374 : 160 - 162
  • [30] Crystal Structure of the Spin 1/2 Honeycomb-Lattice Antiferromagnet Cu2(pymca)3(ClO4)
    Honda, Zentaro
    Kodama, Takafumi
    Kikukawa, Reo
    Hagiwara, Masayuki
    Kida, Takanori
    Sakai, Masamichi
    Fukuda, Takeshi
    Fujihara, Takashi
    Kamata, Norihiko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2015, 84 (03)