Deep Convolutional Neural Network for Detection and Prediction of Waxy Corn Seed Viability Using Hyperspectral Reflectance Imaging

被引:2
|
作者
Zhao, Xiaoqing [1 ]
Pang, Lei [2 ]
Wang, Lianming [1 ]
Men, Sen [3 ,4 ]
Yan, Lei [1 ]
机构
[1] Beijing Forestry Univ, Sch Technol, Beijing 100083, Peoples R China
[2] Capital Univ Phys Educ & Sports, Inst Artificial Intelligence Sports, Beijing 100191, Peoples R China
[3] Beijing Union Univ, Coll Robot, Beijing 100020, Peoples R China
[4] Beijing Union Univ, Beijing Engn Res Ctr Smart Mech Innovat Design Ser, Beijing 100020, Peoples R China
基金
中国国家自然科学基金;
关键词
hyperspectral imaging; deep convolutional neural network; waxy corn seeds; viability detection; MAIZE SEEDS; IDENTIFICATION; TEMPERATURE; GERMINATION; VARIETY; KERNELS; QUALITY; STARCH; VIGOR;
D O I
10.3390/mca27060109
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper aimed to combine hyperspectral imaging (378-1042 nm) and a deep convolutional neural network (DCNN) to rapidly and non-destructively detect and predict the viability of waxy corn seeds. Different viability levels were set by artificial aging (aging: 0 d, 3 d, 6 d, and 9 d), and spectral data for the first 10 h of seed germination were continuously collected. Bands that were significantly correlated (SC) with moisture, protein, starch, and fat content in the seeds were selected, and another optimal combination was extracted using a successive projection algorithm (SPA). The support vector machine (SVM), k-nearest neighbor (KNN), random forest (RF), and deep convolutional neural network (DCNN) approaches were used to establish the viability detection and prediction models. During detection, with the addition of different levels, the recognition effect of the first three methods decreased, while the DCNN method remained relatively stable (always above 95%). When using the previous 2.5 h data, the prediction accuracy rate was generally higher than the detection model. Among them, SVM + full band increased the most, while DCNN + full band was the highest, reaching 98.83% accuracy. These results indicate that the combined use of hyperspectral imaging technology and the DCNN method is more conducive to the rapid detection and prediction of seed viability.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Variety identification of oat seeds using hyperspectral imaging: investigating the representation ability of deep convolutional neural network
    Wu, Na
    Zhang, Yu
    Na, Risu
    Mi, Chunxiao
    Zhu, Susu
    He, Yong
    Zhang, Chu
    RSC ADVANCES, 2019, 9 (22) : 12635 - 12644
  • [32] Hyperspectral Imaging Using a Convolutional Neural Network with Transformer for the Soluble Solid Content and pH Prediction of Cherry Tomatoes
    Qi, Hengnian
    Li, Hongyang
    Chen, Liping
    Chen, Fengnong
    Luo, Jiahao
    Zhang, Chu
    FOODS, 2024, 13 (02)
  • [33] Identification of Soybean Varieties Using Hyperspectral Imaging Coupled with Convolutional Neural Network
    Zhu, Susu
    Zhou, Lei
    Zhang, Chu
    Bao, Yidan
    Wu, Baohua
    Chu, Hangjian
    Yu, Yue
    He, Yong
    Feng, Lei
    SENSORS, 2019, 19 (19)
  • [34] Counterfeit Currency Detection using Deep Convolutional Neural Network
    Kamble, Kiran
    Bhansali, Anuthi
    Satalgaonkar, Pranali
    Alagtmdgi, Shruti
    2019 IEEE PUNE SECTION INTERNATIONAL CONFERENCE (PUNECON), 2019,
  • [35] ROAD CRACK DETECTION USING DEEP CONVOLUTIONAL NEURAL NETWORK
    Zhang, Lei
    Yang, Fan
    Zhang, Yimin Daniel
    Zhu, Ying Julie
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3708 - 3712
  • [36] Breast Cancer Detection using Deep Convolutional Neural Network
    Mechria, Hana
    Gouider, Mohamed Salah
    Hassine, Khaled
    PROCEEDINGS OF THE 11TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE (ICAART), VOL 2, 2019, : 655 - 660
  • [37] Detection of bars in galaxies using a deep convolutional neural network
    Abraham, Sheelu
    Aniyan, A. K.
    Kembhavi, Ajit K.
    Philip, N. S.
    Vaghmare, Kaustubh
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2018, 477 (01) : 894 - 903
  • [38] Smart Vessel Detection using Deep Convolutional Neural Network
    Joseph, Iwin Thanakumar S.
    Sasikala, J.
    Juliet, Sujitha D.
    Raj, Benson Edwin S.
    2018 FIFTH HCT INFORMATION TECHNOLOGY TRENDS (ITT): EMERGING TECHNOLOGIES FOR ARTIFICIAL INTELLIGENCE, 2018, : 28 - 32
  • [39] Fabric Defect Detection Using Deep Convolutional Neural Network
    Biradar, Maheshwari S.
    Shiparamatti, B.G.
    Patil, P.M.
    Optical Memory and Neural Networks (Information Optics), 2021, 30 (03): : 250 - 256
  • [40] Plant Disease Detection Using Deep Convolutional Neural Network
    Pandian, J. Arun
    Kumar, V. Dhilip
    Geman, Oana
    Hnatiuc, Mihaela
    Arif, Muhammad
    Kanchanadevi, K.
    APPLIED SCIENCES-BASEL, 2022, 12 (14):