Convolutional Neural Network-based Transfer Learning and Knowledge Distillation using Multi-Subject Data in Motor Imagery BCI

被引:0
|
作者
Sakhavi, Siavash [1 ,2 ]
Guan, Cuntai [3 ]
机构
[1] Natl Univ Singapore, Fac Elect & Comp Engn, Singapore, Singapore
[2] ASTAR, Inst Infocomm Res I2R, Singapore, Singapore
[3] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore, Singapore
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In Brain Computer Interfaces (BCIs), with multiple recordings from different subjects in hand, a question arises regarding whether the knowledge of previously recorded subjects can be transferred to a new subject. In this study, we explore the possibility of transferring knowledge by using a convolutional network model trained on multiple subjects and fine-tuning the model on a small amount of data from a new subject, thus, reducing the calibration time by reducing the time needed to record data and train a model. Our results show a significant increase in 4-class classification accuracy on the BCI IV-2a competition data, even when a small subset of the data is provided for training.
引用
下载
收藏
页码:588 / 591
页数:4
相关论文
共 50 条
  • [31] Convolutional Neural Network-Based Transfer Learning for Optical Aerial Images Change Detection
    Liu, Junfu
    Chen, Keming
    Xu, Guangluan
    Sun, Xian
    Yan, Menglong
    Diao, Wenhui
    Han, Hongzhe
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (01) : 127 - 131
  • [32] Neural Network-Based Limiter with Transfer Learning
    Abgrall, Remi
    Han Veiga, Maria
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2020,
  • [33] Classification of motor imagery electroencephalogram signals by using a divergence based convolutional neural network
    Dokur, Zumray
    Olmez, Tamer
    APPLIED SOFT COMPUTING, 2021, 113
  • [34] Image-based Motor Imagery EEG Classification using Convolutional Neural Network
    Yang, Tao
    Phua, Kok Soon
    Yu, Juanhong
    Selvaratnam, Thevapriya
    Toh, Valerie
    Ng, Wai Hoe
    Ang, Kai Keng
    So, Rosa Q.
    2019 IEEE EMBS INTERNATIONAL CONFERENCE ON BIOMEDICAL & HEALTH INFORMATICS (BHI), 2019,
  • [35] Neural Network-Based Limiter with Transfer Learning
    Rémi Abgrall
    Maria Han Veiga
    Communications on Applied Mathematics and Computation, 2023, 5 (2) : 532 - 572
  • [36] Recognition of multi-class motor imagery EEG signals based on convolutional neural network
    Liu J.-Z.
    Ye F.-F.
    Xiong H.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2021, 55 (11): : 2054 - 2066
  • [37] Neural Network-Based Limiter with Transfer Learning
    Abgrall, Remi
    Han Veiga, Maria
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2023, 5 (02) : 532 - 572
  • [38] A Multi-Domain Convolutional Neural Network for EEG-Based Motor Imagery Decoding
    Zhi, Hongyi
    Yu, Zhuliang
    Yu, Tianyou
    Gu, Zhenghui
    Yang, Jian
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2023, 31 : 3988 - 3998
  • [39] Motor imagery electroencephalography channel selection based on deep learning: A shallow convolutional neural network
    Amiri, Homa Kashefi
    Zarei, Masoud
    Daliri, Mohammad Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 136
  • [40] Multiclass classification of motor imagery tasks based on multi-branch convolutional neural network and temporal convolutional network model
    Yu, Shiqi
    Wang, Zedong
    Wang, Fei
    Chen, Kai
    Yao, Dezhong
    Xu, Peng
    Zhang, Yong
    Wang, Hesong
    Zhang, Tao
    CEREBRAL CORTEX, 2024, 34 (02)