Parallel indexing technique for spatio-temporal data

被引:12
|
作者
He, Zhenwen [1 ,2 ]
Kraak, Menno-Jan [2 ]
Huisman, Otto [2 ]
Ma, Xiaogang [2 ]
Xiao, Jing [2 ]
机构
[1] China Univ Geosci, Sch Comp, Wuhan 430074, Peoples R China
[2] Univ Twente, Fac Geoinformat Sci & Earth Observat, NL-7514 AE Enschede, Netherlands
基金
中国国家自然科学基金; 国家高技术研究发展计划(863计划);
关键词
Spatio-temporal index; Parallel index; R-Tree; Interval; MOVING-OBJECTS; EFFICIENT; TREE; QUERIES; TRAJECTORIES;
D O I
10.1016/j.isprsjprs.2013.01.014
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The requirements for efficient access and management of massive multi-dimensional spatio-temporal data in geographical information system and its applications are well recognized and researched. The most popular spatio-temporal access method is the R-Tree and its variants. However, it is difficult to use them for parallel access to multi-dimensional spatio-temporal data because R-Trees, and variants thereof, are in hierarchical structures which have severe overlapping problems in high dimensional space. We extended a two-dimensional interval space representation of intervals to a multi-dimensional parallel space, and present a set of formulae to transform spatio-temporal queries into parallel interval set operations. This transformation reduces problems of multi-dimensional object relationships to simpler two-dimensional spatial intersection problems. Experimental results show that the new parallel approach presented in this paper has superior range query performance than R*-trees for handling multi-dimensional spatio-temporal data and multi-dimensional interval data. When the number of CPU cores is larger than that of the space dimensions, the insertion performance of this new approach is also superior to R*-trees. The proposed approach provides a potential parallel indexing solution for fast data retrieval of massive four-dimensional or higher dimensional spatio-temporal data. (C) 2013 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS) Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:116 / 128
页数:13
相关论文
共 50 条
  • [1] Indexing spatio-temporal data warehouses
    Papadias, D
    Tao, YF
    Kalnis, P
    Zhang, J
    [J]. 18TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING, PROCEEDINGS, 2002, : 166 - 175
  • [2] SPATIO-TEMPORAL INDEXING OF THE QUIKSCAT WIND DATA
    Rodriguez, Felix R.
    Barrena, Manuel
    [J]. 2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 754 - 757
  • [3] Indexing Historical Spatio-Temporal Data in the Cloud
    Zhang, Chong
    Chen, Xiaoying
    Ge, Bin
    Xiao, Weidong
    [J]. PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1765 - 1774
  • [4] PIST: An efficient and practical indexing technique for historical spatio-temporal point data
    Botea, Viorica
    Mallett, Daniel
    Nascimento, Mario A.
    Sander, Joerg
    [J]. GEOINFORMATICA, 2008, 12 (02) : 143 - 168
  • [5] PIST: An Efficient and Practical Indexing Technique for Historical Spatio-Temporal Point Data
    Viorica Botea
    Daniel Mallett
    Mario A. Nascimento
    Jörg Sander
    [J]. GeoInformatica, 2008, 12 : 143 - 168
  • [6] AIRSTD: An Approach for Indexing and Retrieving Spatio-Temporal Data
    Halaoui, Hatem F.
    [J]. ADVANCED INTERNET BASED SYSTEMS AND APPLICATIONS, 2009, 4879 : 80 - 90
  • [7] An adaptive indexing technique using spatio-temporal query workloads
    Cho, HJ
    Min, JK
    Chung, CW
    [J]. INFORMATION AND SOFTWARE TECHNOLOGY, 2004, 46 (04) : 229 - 241
  • [8] DSTree: A Spatio-Temporal Indexing Data Structure for Distributed Networks
    Hojati, Majid
    Roberts, Steven
    Robertson, Colin
    [J]. MATHEMATICAL AND COMPUTATIONAL APPLICATIONS, 2024, 29 (03)
  • [9] A Hybrid Spatio-Temporal Data Indexing Method for Trajectory Databases
    Ke, Shengnan
    Gong, Jun
    Li, Songnian
    Zhu, Qing
    Liu, Xintao
    Zhang, Yeting
    [J]. SENSORS, 2014, 14 (07) : 12990 - 13005
  • [10] Spatio-temporal indexing in database semantics
    Hausser, R
    [J]. COMPUTATIONAL LINGUISTICS AND INTELLIGENT TEXT PROCESSING, 2001, 2004 : 53 - 68