Affine inequalities for Lp mean zonoids

被引:5
|
作者
Xi, Dongmeng [1 ]
Guo, Lujun [1 ]
Leng, Gangsong [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1112/blms/bdt095
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the L-p(p >= 1) mean zonoid of a convex body K is given, and we show that it is the L-p centroid body of radial (n + p)th mean body of K up to a dilation. We also establish some affine inequalities of these bodies by proving that the volume of the new bodies is decreasing under Steiner symmetrization.
引用
收藏
页码:367 / 378
页数:12
相关论文
共 50 条
  • [31] Sections and Projections of Lp-Zonoids and Their Polars
    Li, Ai-Jun
    Huang, Qingzhong
    Xi, Dongmeng
    JOURNAL OF GEOMETRIC ANALYSIS, 2018, 28 (01) : 427 - 447
  • [32] Reverse Alexandrov-Fenchel inequalities for zonoids
    Boroczky, Karoly J.
    Hug, Daniel
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2022, 24 (08)
  • [33] SURFACES OF GIVEN MEAN CURVATURE IN LP - APPLICATION TO PROBLEM OF VARIATION INEQUALITIES
    CAFFAREL.GV
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 276 (15): : 1043 - 1045
  • [34] From affine Poincaré inequalities to affine spectral inequalities
    Haddad, J.
    Jimenez, C. H.
    Montenegro, M.
    ADVANCES IN MATHEMATICS, 2021, 386
  • [35] Some log-Minkowski inequalities for Lp-mixed affine surface area
    Li, Chao
    Wei, Guoxin
    POSITIVITY, 2021, 25 (03) : 1079 - 1096
  • [36] LP INEQUALITIES
    WILLIAMS, LR
    WELLS, JH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1978, 64 (03) : 518 - 529
  • [37] Finite sets of piecewise linear inequalities do not characterize zonoids
    Burger, M
    ARCHIV DER MATHEMATIK, 1998, 70 (02) : 160 - 168
  • [38] Lp-Hardy identities and inequalities with respect to the distance and mean distance to the boundary
    Flynn, Joshua
    Lam, Nguyen
    Lu, Guozhen
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2025, 64 (01)
  • [39] Finite sets of piecewise linear inequalities do not characterize zonoids
    Markus Burger
    Archiv der Mathematik, 1998, 70 : 160 - 168
  • [40] Sharp affine Sobolev type inequalities via the Lp Busemann-Petty centroid inequality
    Haddad, J.
    Jimenez, C. H.
    Montenegro, M.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 271 (02) : 454 - 473