Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data For Maritime Surveillance

被引:0
|
作者
Biondi, Filippo [1 ,2 ,3 ]
机构
[1] Nation Res Council ISSIA CNR, Bari, Italy
[2] Italian Space Agcy, Geodesy Space Ctr Matera, Rome, Italy
[3] Italian Minist Def, Joint Satellite Remote Sensing Ctr, Rome, Italy
关键词
Synthetic Aperture Radar; Multi Chromatic Analysis; Compressed Sensing; Low-rank Matrix Completion; Sparsity; Dynamic SAR; SAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Synthetic Aperture Radar (SAR) systems produce a tremendous amount of redundant data if persistent radar surveillance of a specific area is implemented. This paper performs an efficient data reduction extrapolating maritime targets in motion from background subtraction. The technique is based on Robust Principal Component Analysis (RPCA). The algorithm is implemented by Convex Programming (CP). This Low Rank and Sparse Decomposition (LRSD) activity permits the separation of sparse objects of interest, with a stationary low-rank background. RPCA applied to SAR surveillance permits the saving of a large amount of data. Dynamic SAR is procured by Multi Chromatic Analysis (MCA) of Native (RAW)(1) satellite data.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 50 条
  • [41] Microwave Synthetic Aperture Radar Imaging Using Sparse Measurement
    Yang, Xiahan
    Zheng, Yahong Rosa
    Ghasr, Mohammad Tayeb
    Donnell, Kristen M.
    Zoughi, Reza
    2016 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE PROCEEDINGS, 2016, : 1128 - 1132
  • [42] Compressed Synthetic Aperture Radar with Structurally Sparse Random Matrices
    Sun, Jingming
    Yu, Junpeng
    2017 IEEE RADAR CONFERENCE (RADARCONF), 2017, : 1344 - 1347
  • [43] Sparse representation in structured dictionaries with application to synthetic aperture radar
    Varshney, Kush R.
    Cetin, Muejdat
    Fisher, John W., III
    Willsky, Alan S.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2008, 56 (08) : 3548 - 3561
  • [44] Sparse Reconstruction for Synthetic Aperture Radar based on Split SPICE
    Luo, Jiawei
    Zhang, Yongchao
    Mao, Dcqing
    Zhang, Yin
    Huang, Yulin
    Yang, Jianyu
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [45] Sparse representation-based synthetic aperture radar imaging
    Samadi, S.
    Cetin, M.
    Masnadi-Shirazi, M. A.
    IET RADAR SONAR AND NAVIGATION, 2011, 5 (02): : 182 - 193
  • [46] Vision-Based Vehicle Detection for VideoSAR Surveillance Using Low-Rank Plus Sparse Three-Term Decomposition
    Zhang, Ying
    Zhu, Daiyin
    Wang, Peng
    Zhang, Gong
    Leung, Henry
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2020, 69 (05) : 4711 - 4726
  • [47] Unique Sparse Decomposition of Low Rank Matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (04) : 2452 - 2484
  • [48] Sparse Multi-Channel Synthetic Aperture Radar Based Motion Induced Distortion Correction and Classification of Maritime Scenes
    Jansen, Robert W.
    Raj, Raghu G.
    IEEE ACCESS, 2021, 9 : 131109 - 131119
  • [49] Sparse and Low-Rank Tensor Decomposition
    Shah, Parikshit
    Rao, Nikhil
    Tang, Gongguo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 28 (NIPS 2015), 2015, 28
  • [50] Unique sparse decomposition of low rank matrices
    Jin, Dian
    Bing, Xin
    Zhang, Yuqian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,