Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data For Maritime Surveillance

被引:0
|
作者
Biondi, Filippo [1 ,2 ,3 ]
机构
[1] Nation Res Council ISSIA CNR, Bari, Italy
[2] Italian Space Agcy, Geodesy Space Ctr Matera, Rome, Italy
[3] Italian Minist Def, Joint Satellite Remote Sensing Ctr, Rome, Italy
关键词
Synthetic Aperture Radar; Multi Chromatic Analysis; Compressed Sensing; Low-rank Matrix Completion; Sparsity; Dynamic SAR; SAR;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Synthetic Aperture Radar (SAR) systems produce a tremendous amount of redundant data if persistent radar surveillance of a specific area is implemented. This paper performs an efficient data reduction extrapolating maritime targets in motion from background subtraction. The technique is based on Robust Principal Component Analysis (RPCA). The algorithm is implemented by Convex Programming (CP). This Low Rank and Sparse Decomposition (LRSD) activity permits the separation of sparse objects of interest, with a stationary low-rank background. RPCA applied to SAR surveillance permits the saving of a large amount of data. Dynamic SAR is procured by Multi Chromatic Analysis (MCA) of Native (RAW)(1) satellite data.
引用
收藏
页码:75 / 79
页数:5
相关论文
共 50 条
  • [1] Low Rank Plus Sparse Decomposition of Synthetic Aperture Radar Data for Target Imaging
    Leibovich, Matan
    Papanicolaou, George
    Tsogka, Chrysoula
    IEEE TRANSACTIONS ON COMPUTATIONAL IMAGING, 2020, 6 : 491 - 502
  • [2] Low-Rank Plus Sparse Decomposition and Localized Radon Transform for Ship-Wake Detection in Synthetic Aperture Radar Images
    Biondi, Filippo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2018, 15 (01) : 117 - 121
  • [3] A Polarimetric Extension of Low-Rank Plus Sparse Decomposition and Radon Transform for Ship Wake Detection in Synthetic Aperture Radar Images
    Biondi, Filippo
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (01) : 75 - 79
  • [4] Joint Low-Rank and Sparse Tensors Recovery for Video Synthetic Aperture Radar Imaging
    An, Hongyang
    Wu, Junjie
    Teh, Kah Chan
    Sun, Zhichao
    Li, Zhongyu
    Yang, Jianyu
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] Sparse Inverse Synthetic Aperture Radar Imaging Using Structured Low-Rank Method
    Xu, Gang
    Zhang, Bangjie
    Chen, Jianlai
    Wu, Fan
    Sheng, Jialian
    Hong, Wei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [6] Beyond Low Rank plus Sparse: Multiscale Low Rank Matrix Decomposition
    Ong, Frank
    Lustig, Michael
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2016, 10 (04) : 672 - 687
  • [7] Jointly Using Low-Rank and Sparsity Priors for Sparse Inverse Synthetic Aperture Radar Imaging
    Qiu, Wei
    Zhou, Jianxiong
    Fu, Qiang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 100 - 115
  • [8] New experiments in inverse synthetic aperture radar image exploitation for maritime surveillance
    Sadjadi, Firooz A.
    AUTOMATIC TARGET RECOGNITION XXIV, 2014, 9090
  • [9] Coprime Synthetic Aperture Radar (CopSAR): A New Acquisition Mode for Maritime Surveillance
    Di Martino, Gerardo
    Iodice, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (06): : 3110 - 3123
  • [10] High Dimensional Low Rank Plus Sparse Matrix Decomposition
    Rahmani, Mostafa
    Atia, George K.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (08) : 2004 - 2019