Modification of conformable fractional derivative with classical properties

被引:0
|
作者
Al-Sharif, Sh [1 ]
Malkawi, A. [1 ]
机构
[1] Yarmouk Univ, Dept Math, Irbid, Jordan
来源
ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS | 2020年 / 44期
关键词
Conformable fractional derivative;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, a new modification of the conformable fractional derivative that uses limit approach with classical properties, linearity, product rule, semi-chain rule, quotient rule, ets. is given. Moreover, we prove that such generalization formula does not satisfy the classical chain rule.
引用
收藏
页码:30 / 39
页数:10
相关论文
共 50 条
  • [21] Investigation of the Dirac Equation by Using the Conformable Fractional Derivative
    Mozaffari, F. S.
    Hassanabadi, H.
    Sobhani, H.
    Chung, W. S.
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2018, 72 (09) : 987 - 990
  • [22] General conformable fractional derivative and its physical interpretation
    Dazhi Zhao
    Maokang Luo
    Calcolo, 2017, 54 : 903 - 917
  • [23] Geometric meaning of conformable derivative via fractional cords
    Khalil, Roshdi
    Al Horani, Mohammed
    Abu Hammad, Mamon
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2019, 19 (04): : 241 - 245
  • [24] General conformable fractional derivative and its physical interpretation
    Zhao, Dazhi
    Luo, Maokang
    CALCOLO, 2017, 54 (03) : 903 - 917
  • [25] Investigation of the Dirac Equation by Using the Conformable Fractional Derivative
    F. S. Mozaffari
    H. Hassanabadi
    H. Sobhani
    W. S. Chung
    Journal of the Korean Physical Society, 2018, 72 : 987 - 990
  • [26] On some conformable boundary value problems in the setting of a new generalized conformable fractional derivative
    Vivas-Cortez, Miguel
    Arciga, Martin Patricio
    Najera, Juan Carlos
    Hernandez, Jorge Eliecer
    DEMONSTRATIO MATHEMATICA, 2023, 56 (01)
  • [27] A NEW TRUNCATED M-FRACTIONAL DERIVATIVE TYPE UNIFYING SOME FRACTIONAL DERIVATIVE TYPES WITH CLASSICAL PROPERTIES
    Sousa, J. Vanterler Da C.
    Capelas De Oliveira, E.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2018, 16 (01): : 83 - 96
  • [28] Dynamical behaviour of fractional order tumor model with Caputo and conformable fractional derivative
    Balci, Ercan
    Ozturk, Ilhan
    Kartal, Senol
    CHAOS SOLITONS & FRACTALS, 2019, 123 : 43 - 51
  • [29] CONFORMABLE FRACTIONAL DERIVATIVE AND ITS APPLICATION TO FRACTIONAL KLEIN-GORDON EQUATION
    Wang, Kangle
    Yao, Shaowen
    THERMAL SCIENCE, 2019, 23 (06): : 3745 - 3749
  • [30] Some properties of solutions of a linear set-valued differential equation with conformable fractional derivative
    Komleva, Tatyana a.
    Plotnikov, Andrej, V
    Skripnik, Natalia, V
    CUBO-A MATHEMATICAL JOURNAL, 2024, 26 (02): : 191 - 215