Blow-up criteria for fractional nonlinear Schrodinger equations

被引:15
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fractional nonlinear Schrodinger equation; Local well-posedness; Virial estimates; Blow-up criteria; SCATTERING;
D O I
10.1016/j.nonrwa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing fractional nonlinear Schrodinger equation i partial derivative(t)u-(-Delta)(s)u = -vertical bar u vertical bar(alpha)u, (t,x) is an element of R+ x R-d, where s is an element of (1/2,1) and alpha > 0. By using localized virial estimates, we establish general blow-up criteria for non-radial solutions to the equation. As consequences, we obtain blow-up criteria in both L-2-critical and L-2-supercritical cases which extend the results of Boulenger-Himmelsbach-Lenzmann (Boulenger et al., 2016) for non-radial initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 50 条
  • [21] Blow-up criteria for the 3D cubic nonlinear Schrodinger equation
    Holmer, Justin
    Platte, Rodrigo
    Roudenko, Svetlana
    NONLINEARITY, 2010, 23 (04) : 977 - 1030
  • [22] ON BLOW-UP CRITERION FOR THE NONLINEAR SCHRODINGER EQUATION
    Du, Dapeng
    Wu, Yifei
    Zhang, Kaijun
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (07) : 3639 - 3650
  • [23] On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation
    Emil Novruzov
    Betul Yazar
    Monatshefte für Mathematik, 2019, 188 : 163 - 181
  • [24] BLOW-UP FOR NONLINEAR MAXWELL EQUATIONS
    D'Ancona, Piero
    Nicaise, Serge
    Schnaubelt, Roland
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2018,
  • [25] On blow-up criteria for a class of nonlinear dispersive wave equations with dissipation
    Novruzov, Emil
    Yazar, Betul
    MONATSHEFTE FUR MATHEMATIK, 2019, 188 (01): : 163 - 181
  • [26] Blow-up in nonlinear heat equations
    Dejak, Steven
    Gang, Zhou
    Sigal, Israel Michael
    Wang, Shuangcai
    ADVANCES IN APPLIED MATHEMATICS, 2008, 40 (04) : 433 - 481
  • [27] THE LIMIT OF BLOW-UP DYNAMICS SOLUTIONS FOR A CLASS OF NONLINEAR CRITICAL SCHRODINGER EQUATIONS
    Jean-Jacques, N'takpe
    Blin, L. Boua Sobo
    Halima, Nachid
    Gnowille, Kambire D.
    ADVANCES IN DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES, 2024, 31 (02): : 207 - 238
  • [29] Blow-up for the stochastic nonlinear Schrodinger equations with quadratic potential and additive noise
    Meng, Lixin
    Li, Jingyu
    Tao, Jian
    BOUNDARY VALUE PROBLEMS, 2015,
  • [30] BLOW-UP, GLOBAL EXISTENCE AND STANDING WAVES FOR THE MAGNETIC NONLINEAR SCHRODINGER EQUATIONS
    Gan, Zaihui
    Zhang, Jian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2012, 32 (03) : 827 - 846