Blow-up criteria for fractional nonlinear Schrodinger equations

被引:15
|
作者
Van Duong Dinh [1 ,2 ]
机构
[1] Univ Toulouse, CNRS, UMR5219, Inst Math Toulouse, F-31062 Toulouse 9, France
[2] HCMC Univ Pedag, Dept Math, 280 An Duong Vuong, Ho Chi Minh, Vietnam
关键词
Fractional nonlinear Schrodinger equation; Local well-posedness; Virial estimates; Blow-up criteria; SCATTERING;
D O I
10.1016/j.nonrwa.2019.01.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the focusing fractional nonlinear Schrodinger equation i partial derivative(t)u-(-Delta)(s)u = -vertical bar u vertical bar(alpha)u, (t,x) is an element of R+ x R-d, where s is an element of (1/2,1) and alpha > 0. By using localized virial estimates, we establish general blow-up criteria for non-radial solutions to the equation. As consequences, we obtain blow-up criteria in both L-2-critical and L-2-supercritical cases which extend the results of Boulenger-Himmelsbach-Lenzmann (Boulenger et al., 2016) for non-radial initial data. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页码:117 / 140
页数:24
相关论文
共 50 条
  • [1] BLOW-UP CRITERIA FOR LINEARLY DAMPED NONLINEAR SCHRODINGER EQUATIONS
    Van Duong Dinh
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2021, 10 (03): : 599 - 617
  • [2] BLOW-UP OF SOLUTIONS FOR SEMILINEAR FRACTIONAL SCHRODINGER EQUATIONS
    Fino, A. Z.
    Dannawi, I.
    Kirane, M.
    JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS, 2018, 30 (01) : 67 - 80
  • [3] On the blow-up solutions for the nonlinear fractional Schrodinger equation
    Zhu, Shihui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (02) : 1506 - 1531
  • [4] Blow-up criteria for the inhomogeneous nonlinear Schrodinger equation
    Yang, Han
    Zhu, Shihui
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014,
  • [5] Dispersive blow-up for nonlinear Schrodinger equations revisited
    Bona, J. L.
    Ponce, G.
    Saut, J-C
    Sparber, C.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04): : 782 - 811
  • [6] Blow-up solutions for mixed nonlinear Schrodinger equations
    Tan, SB
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2004, 20 (01) : 115 - 124
  • [7] Blow-up solutions of inhomogeneous nonlinear Schrodinger equations
    Pang, PYH
    Tang, HY
    Wang, YD
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2006, 26 (02) : 137 - 169
  • [8] Blow-up criteria for coupled nonlinear Schodinger equations
    Bai, Qianqian
    Li, Xiaoguang
    Zhang, Jian
    APPLICABLE ANALYSIS, 2023, 102 (03) : 830 - 838
  • [9] BLOW-UP OF SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS WITH OSCILLATING NONLINEARITIES
    Ozsari, Turker
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2019, 18 (01) : 539 - 558
  • [10] A sharp threshold of blow-up for coupled nonlinear Schrodinger equations
    Li, Xiaoguang
    Wu, Yonghong
    Lai, Shaoyong
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2010, 43 (16)