Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO2 Nanospheres as Anodes for Lithium-ion Batteries

被引:17
|
作者
Cheong, Jun Young [1 ]
Chang, Joon Ha [1 ]
Kim, Chanhoon [2 ]
Lee, Jiyoung [1 ]
Shim, Yoon-Su [1 ]
Yoo, Seung Jo [1 ,3 ]
Yuk, Jong Min [1 ]
Kim, Il-Doo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Inst Ind Technol, Clean Innovat Technol Grp, 102 Jejudaehak Ro, Jeju Si 63243, Jeju Do, South Korea
[3] Korea Basic Sci Inst, Electron Microscopy Res Ctr, 169-148 Gwahak Ro, Daejeon 34133, South Korea
来源
ACS APPLIED ENERGY MATERIALS | 2019年 / 2卷 / 03期
基金
新加坡国家研究基金会;
关键词
dense SnO2 nanosphere; electrode; in situ TEM; lithium; battery; HOLLOW NANOSTRUCTURES; NANOPARTICLES; NANOFIBERS; CONVERSION; NANOTUBES; SIZE;
D O I
10.1021/acsaem.8b02103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of feasible electrode materials is significant to realize high energy density Li-ion batteries (LIBs). Tin(IV) oxide, in particular, has a number of merits including higher theoretical capacity compared with graphite (1493 mAh g(-1)), low cost, and environmental friendliness. Nevertheless, huge volume changes and subsequent pulverization usually resulted in poor capacity retention of SnO2, where various nanostructures have been adopted to overcome its intrinsic limitations. Here we introduce the new insights into employing polycrystalline dense SnO2 nanospheres (NSs), rather than its hollow structures, as high-performance electrode for LIBs. Contrary to the previous notions, polycrystalline dense SnO2 NSs can exhibit highly stable cycle retention characteristics (1009.9 mAh g(-1) after 300 cycles at 0.5 A g(-1)) as well as considerable rate capabilities (349 mAh g(-1) at 5.0 A g(-1)), even superior to those of polycrystalline hollow SnO2 NSs. Based on the in situ TEM analyses and electrochemical/postmortem analyses, such improved electrochemical performance can be attributed to the (i) predominant isotropic volume changes of polycrystalline SnO2, (ii) formation of numerous nanograins within the NSs, and (iii) maintenance of structural integrity without pulverizations. This work sheds lights on the importance of using polycrystalline dense nanostructures to mitigate the effects of large volume changes and minimize pulverization, which can also be applied to other electrode materials.
引用
收藏
页码:2004 / 2012
页数:17
相关论文
共 50 条
  • [21] Crab-Shell Biotemplated SnO2 Composite Anodes for Lithium-Ion Batteries
    Son, Seung Yeon
    Hong, Seung-Ah
    Oh, Seo Yeong
    Lee, Young-Chul
    Lee, Go-Woon
    Kang, Jeong Won
    Huh, Yun Suk
    Kim, Il Tae
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2018, 18 (09) : 6463 - 6468
  • [22] Nanocomposite anodes for lithium-ion batteries based on Sno2 on multiwalled carbon nanotubes
    Guler, Mehmet Oguz
    Cevher, Ozgur
    Cetinkaya, Tugrul
    Tocoglu, Ubeyd
    Akbulut, Hatem
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (04) : 487 - 498
  • [23] Nano-structured spherical porous SnO2 anodes for lithium-ion batteries
    Yuan, L.
    Guo, Z. P.
    Konstantinov, K.
    Liu, H. K.
    Dou, S. X.
    JOURNAL OF POWER SOURCES, 2006, 159 (01) : 345 - 348
  • [24] Fabrication of Electrospun Porous SnO2 Nanofibers as Anodes Materials for Lithium-ion Batteries
    Huang Hui-Min
    Zhang Su-Qiang
    Wang Wei
    Wang Ce
    Yu Jie
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2012, 33 (07): : 1619 - 1623
  • [25] Electrochemical Performance of SnO2 and SnO2/MWCNT/Graphene Composite Anodes for Li-Ion Batteries
    Cevher, O.
    Akbulut, H.
    ACTA PHYSICA POLONICA A, 2017, 131 (01) : 204 - 206
  • [26] Preparation and electrochemical properties of SnO2 nanowires for application in lithium-ion batteries
    Park, Min-Sik
    Wang, Guo-Xiu
    Kang, Yong-Mook
    Wexler, David
    Dou, Shi-Xue
    Liu, Hua-Kun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (05) : 750 - 753
  • [27] Incorporation of amorphous TiO2 into one-dimensional SnO2 nanostructures as superior anodes for lithium-ion batteries
    Cheong, Jun Young
    Kim, Chanhoon
    Jung, Ji-Won
    Yun, Tae-Gwang
    Youn, Doo Young
    Cho, Su-Ho
    Yoon, Ki Ro
    Jang, Hye-Yeon
    Song, Seok Won
    Kim, Il-Doo
    JOURNAL OF POWER SOURCES, 2018, 400 : 485 - 492
  • [28] Structural and electrochemical properties of SnO2/nanocarbon families as lithium-ion battery anodes
    Xing, Li-Li
    Ma, Chun-Hua
    Cui, Chun-Xiao
    Xue, Xin-Yu
    SOLID STATE SCIENCES, 2012, 14 (01) : 111 - 116
  • [29] Unveiling origin of additional capacity of SnO2 anode in lithium-ion batteries by realistic ex situ TEM analysis
    Lee, Seung-Yong
    Park, Kyu-Young
    Kim, Won-Sik
    Yoon, Sangmoon
    Hong, Seong-Hyeon
    Kang, Kisuk
    Kim, Miyoung
    NANO ENERGY, 2016, 19 : 234 - 245
  • [30] Self-assemble SnO2 porous nanotubes as high-performance anodes for lithium-ion batteries
    Man, Jianzong
    Liu, Kun
    Du, Yehong
    Sun, Juncai
    MATERIALS CHEMISTRY AND PHYSICS, 2020, 256