Unveiling the Origin of Superior Electrochemical Performance in Polycrystalline Dense SnO2 Nanospheres as Anodes for Lithium-ion Batteries

被引:17
|
作者
Cheong, Jun Young [1 ]
Chang, Joon Ha [1 ]
Kim, Chanhoon [2 ]
Lee, Jiyoung [1 ]
Shim, Yoon-Su [1 ]
Yoo, Seung Jo [1 ,3 ]
Yuk, Jong Min [1 ]
Kim, Il-Doo [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Korea Inst Ind Technol, Clean Innovat Technol Grp, 102 Jejudaehak Ro, Jeju Si 63243, Jeju Do, South Korea
[3] Korea Basic Sci Inst, Electron Microscopy Res Ctr, 169-148 Gwahak Ro, Daejeon 34133, South Korea
来源
ACS APPLIED ENERGY MATERIALS | 2019年 / 2卷 / 03期
基金
新加坡国家研究基金会;
关键词
dense SnO2 nanosphere; electrode; in situ TEM; lithium; battery; HOLLOW NANOSTRUCTURES; NANOPARTICLES; NANOFIBERS; CONVERSION; NANOTUBES; SIZE;
D O I
10.1021/acsaem.8b02103
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Development of feasible electrode materials is significant to realize high energy density Li-ion batteries (LIBs). Tin(IV) oxide, in particular, has a number of merits including higher theoretical capacity compared with graphite (1493 mAh g(-1)), low cost, and environmental friendliness. Nevertheless, huge volume changes and subsequent pulverization usually resulted in poor capacity retention of SnO2, where various nanostructures have been adopted to overcome its intrinsic limitations. Here we introduce the new insights into employing polycrystalline dense SnO2 nanospheres (NSs), rather than its hollow structures, as high-performance electrode for LIBs. Contrary to the previous notions, polycrystalline dense SnO2 NSs can exhibit highly stable cycle retention characteristics (1009.9 mAh g(-1) after 300 cycles at 0.5 A g(-1)) as well as considerable rate capabilities (349 mAh g(-1) at 5.0 A g(-1)), even superior to those of polycrystalline hollow SnO2 NSs. Based on the in situ TEM analyses and electrochemical/postmortem analyses, such improved electrochemical performance can be attributed to the (i) predominant isotropic volume changes of polycrystalline SnO2, (ii) formation of numerous nanograins within the NSs, and (iii) maintenance of structural integrity without pulverizations. This work sheds lights on the importance of using polycrystalline dense nanostructures to mitigate the effects of large volume changes and minimize pulverization, which can also be applied to other electrode materials.
引用
收藏
页码:2004 / 2012
页数:17
相关论文
共 50 条
  • [1] Study on SnO2/graphene composites with superior electrochemical performance for lithium-ion batteries
    Chen, Binbin
    Qian, Hang
    Xu, Jianhui
    Qin, Linlin
    Wu, Qi-Hui
    Zheng, Mingsen
    Dong, Quanfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (24) : 9345 - 9352
  • [2] Comparative Study of Electrochemical Performance of SnO2 Anodes with Different Nanostructures for Lithium-Ion Batteries
    Sun, Yan-Hui
    Dong, Pei-Pei
    Lang, Xu
    Chen, Hong-Yu
    Nan, Jun-Min
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2015, 15 (08) : 5880 - 5888
  • [3] Synthesis, characterization and electrochemical performance of porous SnO2 nanospheres as anode materials of lithium-ion batteries
    Li, Zhe
    Wei, Zhi-Yong
    Wang, Heng
    Gao, Feng
    Zhou, Kai-Yuan
    Chen, Guang-Yi
    Liang, Ji-Cai
    Zhang, Wan-Xi
    Gongneng Cailiao/Journal of Functional Materials, 2013, 44 (13): : 1952 - 1955
  • [4] Graphene-based Pt/SnO2 nanocomposite with superior electrochemical performance for lithium-ion batteries
    Zhao, Peng
    Yue, Wenbo
    Xu, Zexuan
    Sun, Simin
    Bao, Huaying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 704 : 51 - 57
  • [5] Preparation and Electrochemical Performance of Reduced Graphene and SnO2 Nanospheres Composite Materials for Lithium-Ion Batteries and Sodium-Ion Batteries
    Chen, Xinxin
    Cai, Ruizheng
    Liu, Penggao
    Liu, Weifang
    Liu, Kaiyu
    CHEMISTRYSELECT, 2021, 6 (13): : 3192 - 3198
  • [6] Nanostructured SnO2/C composite anodes in lithium-ion batteries
    Hsieh, Chien-Te
    Chen, Jin-Ming
    Huang, Hsiu-Wen
    International Journal of Nanoscience, Vol 2, Nos 4 and 5, 2003, 2 (4-5): : 299 - 306
  • [7] In-situ Grown SnO2 Nanospheres on Reduced GO Nanosheets as Advanced Anodes for Lithium-ion Batteries
    Wang, Zhen
    Chen, Lei
    Feng, Jingjie
    Liu, Shenghong
    Wang, Yang
    Fan, Qinghua
    Zhao, Yanming
    CHEMISTRYOPEN, 2019, 8 (06) : 712 - 718
  • [8] Promising electrochemical performance of pristine SnO2 anodes for lithium and sodium-ion batteries
    Ragupathi, Veena
    Lokeswararao, Y.
    Mitra, Soumyadip
    Sudakar, C.
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2023, 943
  • [9] Synthesis of Co/SnO2 core-shell nanowire arrays and their electrochemical performance as anodes of lithium-ion batteries
    Lei, Yu
    Du, Ning
    Liu, Wei
    Wu, Hao
    Yang, Deren
    IONICS, 2019, 25 (10) : 4651 - 4658
  • [10] Synthesis of Co/SnO2 core-shell nanowire arrays and their electrochemical performance as anodes of lithium-ion batteries
    Yu Lei
    Ning Du
    Wei Liu
    Hao Wu
    Deren Yang
    Ionics, 2019, 25 : 4651 - 4658