Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy

被引:36
|
作者
Tuzson, B. [1 ]
Zeyer, K. [1 ]
Steinbacher, M. [1 ]
McManus, J. B. [2 ]
Nelson, D. D. [2 ]
Zahniser, M. S. [2 ]
Emmenegger, L. [1 ]
机构
[1] Empa, Swiss Fed Labs Mat Sci & Technol, Lab Air Pollut & Environm Technol, CH-8600 Dubendorf, Switzerland
[2] Aerodyne Res Inc, Ctr Atmospher & Environm Chem, Billerica, MA 01821 USA
基金
瑞士国家科学基金会;
关键词
CATALYTIC-REDUCTION TECHNIQUE; ODD-NITROGEN NOY; HIGH-PRECISION; JUNGFRAUJOCH; INSTRUMENT; FIELD; CHEMISTRY; DIOXIDE; OXIDE;
D O I
10.5194/amt-6-927-2013
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
A quantum cascade laser based absorption spectrometer for continuous and direct measurements of NO and NO2 was employed at the high-altitude monitoring site Jungfraujoch (3580 m a.s.l., Switzerland) during a three-month campaign in spring/summer 2012. The total reactive nitrogen, NOy, was also measured in the form of NO after conversion on a gold catalyst. The aim was to assess the suitability of the instrument for long-term monitoring of the main reactive nitrogen species under predominantly free tropospheric air conditions. A precision (1 sigma) of 10 and 3 ppt for NO and NO2 was achieved under field conditions after 180 s averaging time. The linear dynamic range of the instrument has been verified for both species from the detection limit up to 45 ppb. The spectrometer shared a common sampling inlet with a chemiluminescence-based analyzer. The comparison of the time series shows excellent agreement between the two techniques and demonstrates the adequacy of the laser spectroscopic approach for this kind of demanding environmental applications.
引用
收藏
页码:927 / 936
页数:10
相关论文
共 50 条
  • [31] Intracavity laser absorption spectroscopy using mid-IR quantum cascade laser
    Medhi, G.
    Muravjov, A. V.
    Saxena, H.
    Fredricksen, C. J.
    Brusentsova, T.
    Peale, R. E.
    Edwards, O.
    NEXT-GENERATION SPECTROSCOPIC TECHNOLOGIES IV, 2011, 8032
  • [32] Fourier transform and multiplexed intrapulse quantum cascade laser spectrometer measurements of NO2 and its dimer N2O4
    Wilson, David
    Duxbury, Geoffrey
    Langford, Nigel
    CANADIAN JOURNAL OF PHYSICS, 2013, 91 (11) : 941 - 948
  • [33] Quantum cascade laser FM spectroscopy of explosives
    Gutmann, Zach
    Clasp, Trocia
    Lue, Chris
    Johnson, Tiffani
    Ingle, Taylor
    Jamison, Janet
    Buchanan, Roger
    Reeve, Scott
    CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR, AND EXPLOSIVES (CBRNE) SENSING XIV, 2013, 8710
  • [34] FREE-SPACE OPTICAL COMMUNICATIONS USING QUANTUM CASCADE LASER
    Bielecki, Z.
    Kolosowski, W.
    Mikolajczyk, J.
    Nowakowski, M.
    Sedek, E.
    Wojtas, J.
    2008 MIKON CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2008, : 47 - +
  • [35] Doppler-free Zeeman modulation laser spectroscopy of NO2 molecule
    Mao, WT
    Chen, YQ
    Cai, PP
    Lu, F
    Chen, JH
    Xia, CP
    He, Y
    Wang, JM
    Gong, SS
    CHINESE SCIENCE BULLETIN, 1996, 41 (04): : 295 - 299
  • [36] Doppler-free Zeeman modulation laser spectroscopy of NO2 molecule
    毛文涛
    陈扬骎
    蔡佩佩
    吕芳
    陈金海
    夏长平
    何勇
    王嘉珉
    龚顺生
    Chinese Science Bulletin, 1996, (04) : 295 - 299
  • [37] Measurements of NOx, acyl peroxynitrates, and NOy with automatic interference corrections using a NO2 analyzer and gas phase titration
    Hargrove, James
    Zhang, Jingsong
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (04):
  • [38] Mass selective infrared spectroscopy using a free electron laser
    Putter, M
    von Helden, G
    Meijer, G
    CHEMICAL PHYSICS LETTERS, 1996, 258 (1-2) : 118 - 122
  • [39] Intra-puff CO and CO2 measurements of cigarettes with iron oxide cigarette paper using quantum cascade laser spectroscopy
    Crawford, Danielle R.
    Parrish, Milton E.
    Gee, Diane L.
    Harward, Charles N.
    SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2007, 67 (01) : 4 - 15
  • [40] Comparison of airborne measurements of NO, NO2, HONO, NOy, and CO during FIREX-AQ
    Bourgeois, Ilann
    Peischl, Jeff
    Neuman, J. Andrew
    Brown, Steven S.
    Allen, Hannah M.
    Campuzano-Jost, Pedro
    Coggon, Matthew M.
    DiGangi, Joshua P.
    Diskin, Glenn S.
    Gilman, Jessica B.
    Gkatzelis, Georgios, I
    Guo, Hongyu
    Halliday, Hannah A.
    Hanisco, Thomas F.
    Holmes, Christopher D.
    Huey, L. Gregory
    Jimenez, Jose L.
    Lamplugh, Aaron D.
    Lee, Young Ro
    Lindaas, Jakob
    Moore, Richard H.
    Nault, Benjamin A.
    Nowak, John B.
    Pagonis, Demetrios
    Rickly, Pamela S.
    Robinson, Michael A.
    Rollins, Andrew W.
    Selimovic, Vanessa
    St Clair, Jason M.
    Tanner, David
    Vasquez, Krystal T.
    Veres, Patrick R.
    Warneke, Carsten
    Wennberg, Paul O.
    Washenfelder, Rebecca A.
    Wiggins, Elizabeth B.
    Womack, Caroline C.
    Xu, Lu
    Zarzana, Kyle J.
    Ryerson, Thomas B.
    ATMOSPHERIC MEASUREMENT TECHNIQUES, 2022, 15 (16) : 4901 - 4930