Large-scale manifold learning

被引:0
|
作者
Talwalkar, Ameet [1 ]
Kumar, Sanjiv [2 ]
Rowley, Henry [3 ]
机构
[1] Courant Inst, New York, NY 10011 USA
[2] Google Res, New York, NY 10011 USA
[3] Google Res, Mountain View, CA USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper examines the problem of extracting low-dimensional manifold structure given millions of high-dimensional face images. Specifically, we address the computational challenges of nonlinear dimensionality reduction via Isomap and Laplacian Eigenmaps, using a graph containing about 18 million nodes and 65 million edges. Since most manifold learning techniques rely on spectral decomposition, we first analyze two approximate spectral decomposition techniques for large dense matrices (Nystrom and Column-sampling), providing the first direct theoretical and empirical comparison between these techniques. We next show extensive experiments on learning low-dimensional embeddings for two large face datasets: CMU-PIE (35 thousand faces) and a web dataset (18 million faces). Our comparisons show that the Nystrom approximation is superior to the Column-sampling method. Furthermore, approximate Isomap tends to perform better than Laplacian Eigenmaps on both clustering and classification with the labeled CMU-PIE dataset.
引用
收藏
页码:2554 / +
页数:2
相关论文
共 50 条
  • [41] Concurrent Learning of Large-Scale Random Forests
    Bostrom, Henrik
    ELEVENTH SCANDINAVIAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (SCAI 2011), 2011, 227 : 20 - 29
  • [42] Randomized algorithms for large-scale dictionary learning
    Wu, Gang
    Yang, Jiali
    NEURAL NETWORKS, 2024, 179
  • [43] Learning to Delegate for Large-scale Vehicle Routing
    Li, Sirui
    Yan, Zhongxia
    Wu, Cathy
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34
  • [44] Tractable large-scale deep reinforcement learning
    Sarang, Nima
    Poullis, Charalambos
    COMPUTER VISION AND IMAGE UNDERSTANDING, 2023, 232
  • [45] SOFAR: Large-Scale Association Network Learning
    Uematsu, Yoshimasa
    Fan, Yingying
    Chen, Kun
    Lv, Jinchi
    Lin, Wei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2019, 65 (08) : 4924 - 4939
  • [46] Machine learning for large-scale MOF screening
    Coupry, Damien
    Groot, Laurens
    Addicoat, Matthew
    Heine, Thomas
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [47] Large-Scale Neural Consolidation in BMI Learning
    You, Albert
    Zippi, Ellen L.
    Carmena, Jose M.
    2019 9TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING (NER), 2019, : 603 - 606
  • [48] Large-scale knowledge graph representation learning
    Badrouni, Marwa
    Katar, Chaker
    Inoubli, Wissem
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (09) : 5479 - 5499
  • [49] Resource Elasticity for Large-Scale Machine Learning
    Huang, Botong
    Boehm, Matthias
    Tian, Yuanyuan
    Reinwald, Berthold
    Tatikonda, Shirish
    Reiss, Frederick R.
    SIGMOD'15: PROCEEDINGS OF THE 2015 ACM SIGMOD INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2015, : 137 - 152
  • [50] Variance Counterbalancing for Stochastic Large-scale Learning
    Lagari, Pola Lydia
    Tsoukalas, Lefteri H.
    Lagaris, Isaac E.
    INTERNATIONAL JOURNAL ON ARTIFICIAL INTELLIGENCE TOOLS, 2020, 29 (05)