Surveillance of work environment and heat stress assessment using meteorological data

被引:4
|
作者
Gao, Chuansi [1 ]
Kuklane, Kalev [1 ]
Ostergren, Per-Olof [2 ]
Kjellstrom, Tord [3 ,4 ]
机构
[1] Lund Univ, Thermal Environm Lab, Div Ergon & Aerosol Technol, Dept Design Sci,Fac Engn, Lund, Sweden
[2] Lund Univ, Social Med & Global Hlth, Dept Clin Sci Malmo, Lund, Sweden
[3] Ctr Technol Res & Innovat CETRI Ltd, Lemesos, Cyprus
[4] Australian Natl Univ, Natl Ctr Epidemiol & Populat Hlth, Canberra, ACT, Australia
基金
欧盟地平线“2020”;
关键词
Workplace surveillance; Health surveillance; Heat stress assessment; Thermal models and indices; Thermal climate; Heat balance;
D O I
10.1007/s00484-018-1652-x
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Health surveillance and workplace surveillance are two related but different aspects of occupational health services. The assessment of heat stress using heat indices and thermal models in connection with meteorological data is an important part of surveillance of workplace heat. The assessment of heat exposure provides the basis for occupational health services. Workers should have health surveillance if the high heat stress cannot be reduced.
引用
收藏
页码:195 / 196
页数:2
相关论文
共 50 条
  • [21] On the Importance of Data Quality Assessment of Crowdsourced Meteorological Data
    Vuckovic, Milena
    Schmidt, Johanna
    [J]. SUSTAINABILITY, 2023, 15 (08)
  • [22] Cold Stress in the Work Environment
    Chalupka, Stephanie
    [J]. AAOHN JOURNAL, 2009, 57 (01): : 40 - 40
  • [23] Assessment of stress at work
    Mazgutov, A. V.
    Burtenshaw, A.
    [J]. EUROPEAN PSYCHIATRY, 2008, 23 : S85 - S86
  • [24] Assessment of Heat Risk of Winter Wheat Cropping Based on Long-Term Meteorological Data
    Li, Min
    Wu, Xuejing
    Zhu, Yulei
    Ullah, Najeeb
    Song, Youhong
    [J]. AGRONOMY-BASEL, 2023, 13 (08):
  • [25] Prediction of Dengue Outbreaks Based on Disease Surveillance and Meteorological Data
    Ramadona, Aditya Lia
    Lazuardi, Lutfan
    Hii, Yien Ling
    Holmner, Asa
    Kusnanto, Hari
    Rocklov, Joacim
    [J]. PLOS ONE, 2016, 11 (03):
  • [26] Using web data to improve surveillance for heat sensitive health outcomes
    Jung, Jihoon
    Uejio, Christopher K.
    Duclos, Chris
    Jordan, Melissa
    [J]. ENVIRONMENTAL HEALTH, 2019, 18 (1)
  • [27] Using web data to improve surveillance for heat sensitive health outcomes
    Jihoon Jung
    Christopher K. Uejio
    Chris Duclos
    Melissa Jordan
    [J]. Environmental Health, 18
  • [28] Assessment and prediction of meteorological drought using machine learning algorithms and climate data
    En-Nagre, Khalid
    Aqnouy, Mourad
    Ouarka, Ayoub
    Naqvi, Syed Ali Asad
    Bouizrou, Ismail
    El Messari, Jamal Eddine Stitou
    Tariq, Aqil
    Soufan, Walid
    Li, Wenzhao
    El-Askary, Hesham
    [J]. CLIMATE RISK MANAGEMENT, 2024, 45
  • [29] Efficient Placement of Meteorological Big Data Using NSGA-III in Cloud Environment
    Huang, Tao
    Ruan, Feng
    Xue, Shengjun
    Dai, Ranran
    Yang, Qin
    [J]. 2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 569 - 574
  • [30] Uncertainties in global aerosol simulations: Assessment using three meteorological data sets
    Liu, Xiaohong
    Penner, Joyce E.
    Das, Bigyani
    Bergmann, Dan
    Rodriguez, Jose M.
    Strahan, Susan
    Wang, Minghuai
    Feng, Yan
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2007, 112 (D11)