Analysis of ligand binding by two-colour fluorescence cross-correlation spectroscopy

被引:0
|
作者
Weidemann, T
Wachsmuth, M
Tewes, M
Rippe, K
Langowski, J
机构
[1] Abt Biophys Makromol, Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
[2] Abt Mol Genet, Deutsch Krebsforschungszentrum, D-69120 Heidelberg, Germany
[3] Caesar Res Ctr, D-53111 Bonn, Germany
关键词
FCS; FCCS; receptor-ligand binding; protein-DNA interactions;
D O I
10.1002/1438-5171(200204)3:1<49::AID-SIMO49>3.3.CO;2-K
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Fluorescence correlation spectroscopy (FCS) is a well-established method for the analysis of freely diffusing fluorescent particles in solution. In a two-colour setup, simultaneous detection of two different dyes allows the acquisition of both the autocorrelation of the signal of each channel and the cross-correlation of the two channels (fluorescence cross-correlation spectroscopy, FCCS). The cross-correlation function is related to the amount of diffusing particles carrying both dyes and can be used for monitoring a binding reaction. Here we develop a formalism for a quantitative analysis of ligand binding from a combination of the auto- and the cross-correlation amplitudes. Technical constraints, like the focal geometry, background signal and cross-talk between the detection channels as well as photophysical and biochemical effects which modulate the brightness of the particles are included in the analysis. Based on this framework a comprehensive treatment for the determination of two-component binding equilibria by FCS/FCCS is presented.
引用
收藏
页码:49 / 61
页数:13
相关论文
共 50 条
  • [41] Fluorescence cross-correlation spectroscopy with capillary electrophoresis for analyzing biomolecule dynamics
    Van Orden, A
    Lung, LY
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 230 : U335 - U335
  • [42] Measuring Biomolecular Interactions with Single Wavelength Fluorescence Cross-Correlation Spectroscopy
    Wohland, Thorsten
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 20A - 20A
  • [43] Single-Color Fluorescence Lifetime Cross-Correlation Spectroscopy In Vivo
    Stefl, Martin
    Herbst, Konrad
    Ruebsam, Marc
    Benda, Ales
    Knop, Michael
    BIOPHYSICAL JOURNAL, 2020, 119 (07) : 1359 - 1370
  • [44] Spatial fluorescence cross-correlation spectroscopy between core and ring pinholes
    Blancquaert, Yoann
    Delon, Antoine
    Derouard, Jacques
    Jaffiol, Rodolphe
    BIOPHOTONICS AND NEW THERAPY FRONTIERS, 2006, 6191
  • [45] Near-Field Fluorescence Cross-Correlation Spectroscopy on Planar Membranes
    Kelly, Christopher V.
    Wakefield, Devin L.
    Holowka, David A.
    Craighead, Harold G.
    Baird, Barbara A.
    ACS NANO, 2014, 8 (07) : 7392 - 7404
  • [46] INCOHERENT CROSS-CORRELATION SPECTROSCOPY
    TONG, P
    XIA, KQ
    ACKERSON, BJ
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12): : 9256 - 9265
  • [47] Factors Affecting the Quantification of Biomolecular Interactions by Fluorescence Cross-Correlation Spectroscopy
    Foo, Yong Hwee
    Naredi-Rainer, Nikolaus
    Lamb, Don C.
    Ahmed, Sohail
    Wohland, Thorsten
    BIOPHYSICAL JOURNAL, 2012, 102 (05) : 1174 - 1183
  • [48] Single wavelength fluorescence cross-correlation spectroscopy: principles, limits and applications
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 682 - 682
  • [49] Practical guidelines for dual-color fluorescence cross-correlation spectroscopy
    Kirsten Bacia
    Petra Schwille
    Nature Protocols, 2007, 2 : 2842 - 2856
  • [50] Practical guidelines for dual-color fluorescence cross-correlation spectroscopy
    Bacia, Kirsten
    Schwille, Petra
    NATURE PROTOCOLS, 2007, 2 (11) : 2842 - 2856